Commutative algebra WS18 Exercise set 12.

Instructor: Anton Mellit

Problem 1. [AM, Ch. 4, Ex. 8] Show that in the polynomial ring $k[x_1, \ldots, x_n]$ the ideals (x_1, \ldots, x_l) $(1 \le l \le n)$ are prime and all their powers are primary.

Problem 2. [AM, Ch. 4, Ex. 10] For any prime ideal \mathfrak{p} in a ring R, and for any ideal \mathfrak{a} , denote by $S_{\mathfrak{p}}(\mathfrak{a})$ the saturation with respect to $S_{\mathfrak{p}} = R \setminus \mathfrak{p}$. Show that it is given by the kernel of the map $R \to (R/\mathfrak{a})_{\mathfrak{p}}$. Prove that

- (1) $S_{\mathfrak{p}}(\mathfrak{a}) \subset \mathfrak{p};$
- (2) $\operatorname{rad}(S_{\mathfrak{p}}(\mathfrak{a})) = \mathfrak{p}$ if and only if \mathfrak{p} is a minimal associated prime of \mathfrak{a} ;
- (3) if $\mathfrak{p} \supset \mathfrak{p}'$, then $S_{\mathfrak{p}}(\mathfrak{a}) \subset S_{\mathfrak{p}'}(\mathfrak{a})$;
- (4) $\bigcap_{\mathfrak{p}\in D(\mathfrak{a})} = \mathfrak{a}$, where $D(\mathfrak{a})$ is the set of associated primes of \mathfrak{a} .

Problem 3. [AM, Ch. 4, Ex. 11] If \mathfrak{p} is a minimal prime ideal of a ring R, show that $S_{\mathfrak{p}}(0)$ is the smallest \mathfrak{p} -primary ideal. Let \mathfrak{a} be the intersection of all the ideals $S_{\mathfrak{p}}(0)$ as \mathfrak{p} runs through the minimal prime ideals of R. Show that \mathfrak{a} is contained in the nilradical of R. Suppose the zero ideal has a primary decomposition. Prove that $\mathfrak{a} = 0$ if and only if every prime ideal associated to 0 is minimal.

Problem 4. [AM, Ch. 4, Ex. 13] Let R be a ring and \mathfrak{p} a prime ideal of R. The *n*-th symbolic power of \mathfrak{p} is defined to be the saturation

$$\mathfrak{p}^{(n)} = S_{\mathfrak{p}}(\mathfrak{p}^n).$$

Show that

- (1) $\mathbf{p}^{(n)}$ is a **p**-primary ideal;
- (2) if \mathfrak{p}^n has a primary decomposition, then $\mathfrak{p}^{(n)}$ is its \mathfrak{p} -primary component;
- (3) if $\mathfrak{p}^{(m)}\mathfrak{p}^{(n)}$ has a primary decomposition, then $\mathfrak{p}^{(m+n)}$ is its \mathfrak{p} -primary component.
- (4) $\mathbf{p}^{(n)} = \mathbf{p}^n$ holds if and only if \mathbf{p}^n is \mathbf{p} -primary.

Due date: 22.01.2019