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1. Introduction

One way to do mathematics (and sometimes also physics) is to start with a space, extract

some numerical invariants from it, then package these numbers into functions, and study those

functions using algebra. This course should illustrate this point of view.

2. First examples (Practice 1-2)

We would like to calculate some examples to get experience.

For any m ∈ Z and n ∈ Z>0, we would like to calculate

fm(x1, . . . , xn) =

n∑
i=1

xmi∏n
j=1
j 6=i

(xi − xj)
.

Note first, that for all m ≥ 0 fm must be a polynomial in x1, . . . , xn. Indeed, let

P (x1, . . . , xn) = fm(x1, . . . , xn)
∏

1≤i<j≤n
(xi − xj).

Then P is a polynomial in x1, . . . , xn. Moreover, it is antisymmetric (permuting any two variables

changes its sign). This implies that P vanishes when any two variables coincide. This implies

that P is divisible by xi−xj . So P must be divisible by the product of all the differences xi−xj
(because the polynomial ring is a unique factorization domain). Therefore

fm(x1, . . . , xn) =
P (x1, . . . , xn)∏
1≤i<j≤n(xi − xj)

is a polynomial.

For 0 ≤ m ≤ n− 2 we must have fm = 0 because otherwise the degree of fm is m− n+ 1 < 0,

which is impossible for a polynomial.

Note also that

fm(x−11 , . . . , x−1n ) = (−1)n−1

(
n∏
i=1

xi

)
fn−2−m,

so if we calculate fm for m ≥ n− 1, we obtain fm for m ≤ −1, and vice versa.

We now can use two approaches.
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2.1. Approach 1. The first approach uses complex analysis and goes by computing residues of

the following function, viewed as a function of t.

ϕm(x1, . . . , xn; t) =
tm∏n

i=1(t− xi)
.

The total sum of the residues must be zero. The sum of the residues in t = x1, . . . , xn gives fm,

so the residues at 0 and ∞ allow us to compute fm.

2.2. Approach 2. The second approach uses only algebra. The main idea of the second approach

is to expand the following function as a power series in t:

ϕ(x1, . . . , xn; t) =
n∑
i=1

1

(xi − t)
∏n
j=1
j 6=i

(xi − xj)
=

∞∑
m=0

tmf−m−1,

and show, on the other hand, that

ϕ(x1, . . . , xn; t) =
(−1)n−1∏n
i=1(xi − t)

.

This gives the formula

f−m−1(x1, . . . , xn) = (−1)n−1

(
n∏
i=1

xi

)−1 ∑
a1,...,an≥0∑

ai=m

x−a11 · · ·x−ann ,

so we have fm for m ≤ −1.

2.3. Result.

fm(x1, . . . , xn) =


hm−n+1(x1, . . . , xn) (m ≥ n− 1),

0 (0 ≤ m ≤ n− 2),

(−1)n−1 (
∏n
i=1 xi)

−1 h−m−1(x
−1
1 , . . . , x−1n ) (m ≤ −1).

2.4. Calculations in SAGE. During the course, we would like to do some examples of calcula-

tions in SAGE (http://www.sagemath.org/). I prefer to use SAGE in command line, but it is

possible to use web-interface, and even the free online inteface at http://sagecell.sagemath.

org/.

To begin, let us first verify our formula for the functions fm. Take n = 4.

sage : R.<x1 , x2 , x3 , x4>=QQ[ ]

sage : xx=[x1 , x2 , x3 , x4 ]

sage : def f (m) :

. . . . : return sum( xx [ i ] ˆm/prod ( xx [ i ]−xx [ j ] for j in

range (4 ) i f j != i ) for i in range (4 ) )

. . . . :

http://www.sagemath.org/
http://sagecell.sagemath.org/
http://sagecell.sagemath.org/
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sage : f ( 1 )

0

sage : f ( 2 )

0

sage : f ( 3 )

1

sage : f ( 4 )

x1 + x2 + x3 + x4

sage : f ( 5 )

x1ˆ2 + x1∗x2 + x2ˆ2 + x1∗x3 + x2∗x3 + x3ˆ2 + x1∗x4 + x2∗x4

+ x3∗x4 + x4ˆ2

sage : f (−1)

(−1) /( x1∗x2∗x3∗x4 )

sage : f (−2)

(−x1∗x2∗x3 − x1∗x2∗x4 − x1∗x3∗x4 − x2∗x3∗x4 )

/( x1ˆ2∗x2ˆ2∗x3ˆ2∗x4 ˆ2)

sage : f (−2) . subs ( x1=1/x1 , x2=1/x2 , x3=1/x3 , x4=1/x4 )

−x1ˆ2∗x2∗x3∗x4 − x1∗x2ˆ2∗x3∗x4 − x1∗x2∗x3ˆ2∗x4

− x1∗x2∗x3∗x4ˆ2

sage : f a c t o r ( )

(−1) ∗ x4 ∗ x3 ∗ x2 ∗ x1 ∗ ( x1 + x2 + x3 + x4 )

sage : f (−3) . subs ( x1=1/x1 , x2=1/x2 , x3=1/x3 , x4=1/x4 )

−x1ˆ3∗x2∗x3∗x4 − x1ˆ2∗x2ˆ2∗x3∗x4 − x1∗x2ˆ3∗x3∗x4

− x1ˆ2∗x2∗x3ˆ2∗x4 − x1∗x2ˆ2∗x3ˆ2∗x4 − x1∗x2∗x3ˆ3∗x4

− x1ˆ2∗x2∗x3∗x4ˆ2 − x1∗x2ˆ2∗x3∗x4ˆ2 − x1∗x2∗x3ˆ2∗x4ˆ2

− x1∗x2∗x3∗x4ˆ3

sage : f a c t o r ( )

(−1) ∗ x4 ∗ x3 ∗ x2 ∗ x1 ∗ ( x1ˆ2 + x1∗x2 + x2ˆ2 + x1∗x3

+ x2∗x3 + x3ˆ2 + x1∗x4 + x2∗x4 + x3∗x4 + x4 ˆ2)

sage :

Next we try to express x51 + x52 in terms of e1, e2 to illustrate the proof of Theorem 3.3. Note

that SAGE automatically displays polynomials in such a way that the main term comes first.

sage : R.<x1 , x2>=QQ[ ]

sage : e1=x1+x2

sage : e2=x1∗x2
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sage : p5=x1ˆ5+x2ˆ5

sage : p5

x1ˆ5 + x2ˆ5

sage : e1 ˆ5

x1ˆ5 + 5∗x1ˆ4∗x2 + 10∗x1ˆ3∗x2ˆ2 + 10∗x1ˆ2∗x2ˆ3 + 5∗x1∗x2ˆ4

+ x2ˆ5

sage : p5−e1 ˆ5

−5∗x1ˆ4∗x2 − 10∗x1ˆ3∗x2ˆ2 − 10∗x1ˆ2∗x2ˆ3 − 5∗x1∗x2ˆ4

sage : e2∗ e1 ˆ3

x1ˆ4∗x2 + 3∗x1ˆ3∗x2ˆ2 + 3∗x1ˆ2∗x2ˆ3 + x1∗x2ˆ4

sage : p5−e1ˆ5+e2∗ e1 ˆ3∗5
5∗x1ˆ3∗x2ˆ2 + 5∗x1ˆ2∗x2ˆ3

sage : p5−e1ˆ5+e2∗ e1ˆ3∗5−5∗e2 ˆ2∗ e1

0

The same formula does not work for three variables, so we need more terms, involving e3.

sage : R.<x1 , x2 , x3>=QQ[ ]

sage : p5=x1ˆ5+x2ˆ5+x3ˆ5

sage : e1=x1+x2+x3

sage : e2=x1∗x2+x1∗x3+x2∗x3

sage : e3=x1∗x2∗x3

sage : p5−e1ˆ5+e2∗ e1ˆ3∗5−5∗e2 ˆ2∗ e1

5∗x1ˆ3∗x2∗x3 + 5∗x1ˆ2∗x2ˆ2∗x3 + 5∗x1∗x2ˆ3∗x3

+ 5∗x1ˆ2∗x2∗x3ˆ2 + 5∗x1∗x2ˆ2∗x3ˆ2 + 5∗x1∗x2∗x3ˆ3

sage : e3∗ e1 ˆ2

x1ˆ3∗x2∗x3 + 2∗x1ˆ2∗x2ˆ2∗x3 + x1∗x2ˆ3∗x3 + 2∗x1ˆ2∗x2∗x3ˆ2

+ 2∗x1∗x2ˆ2∗x3ˆ2 + x1∗x2∗x3ˆ3

sage : p5−e1ˆ5+e2∗ e1ˆ3∗5−5∗e2 ˆ2∗ e1−5∗e3∗ e1 ˆ2

−5∗x1ˆ2∗x2ˆ2∗x3 − 5∗x1ˆ2∗x2∗x3ˆ2 − 5∗x1∗x2ˆ2∗x3ˆ2

sage : p5−e1ˆ5+e2∗ e1ˆ3∗5−5∗e2 ˆ2∗ e1−5∗e3∗ e1ˆ2+5∗e3∗ e2

0

SAGE can be used, for instance, to list all partitions.

sage : P a r t i t i o n s (5 )

P a r t i t i o n s o f the i n t e g e r 5

sage : l i s t ( P a r t i t i o n s (5 ) )
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[ [ 5 ] , [ 4 , 1 ] , [ 3 , 2 ] , [ 3 , 1 , 1 ] , [ 2 , 2 , 1 ] , [ 2 , 1 , 1 , 1 ] ,

[ 1 , 1 , 1 , 1 , 1 ] ]

3. Basic algebra of symmetric functions (Lecture 1)

The base field is C, but in most cases can be anything.

Definition 3.1. Let n ∈ Z≥0. A symmetric function in n variables is a polynomial f ∈
C[x1, x2, . . . , xn] satisfying any of the following equivalent conditions:

(i) f(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn) = f(x1, . . . , xn) for i = 1, 2, . . . , n− 1.

(ii) f(x1, . . . , xj , . . . , xi, . . . , xn) = f(x1, . . . , xi, . . . , xj , . . . , xn) for any pair 1 ≤ i < j ≤ n.

(iii) f(xπ(1), xπ(2), . . . , xπ(n)) = f(x1, . . . , xn) for any permutation π ∈ Sn.

The space of symmetric functions in n variables is denoted by Symn.

Suppose a1, . . . , an ∈ Z≥0. Denote by coeffa1,...,an f the coefficient of the monomial xa11 . . . xann
in f . This gives a linear map

coeffa1,...,an : Symn → C.

For any permutation π ∈ Sn and any f ∈ Symn, we have

coeffa1,...,an f = coeffaπ(1),...,aπ(n) f.

So it is enough to consider a1 ≥ a2 ≥ . . . ≥ an.

One can write any f ∈ Symn uniquely as follows:

f = f (0) + f (1) + f (2) + · · · ,

where f (d) contains only monomials of total degree d. Denote the space of symmetric functions

of degree d by Symd
n.

3.1. Monomial basis.

Proposition 3.2. Let P (n, d) be the set of n-tuples of integers a = (a1, . . . , an) satisfying ai ≥ 0

and
∑n

i=1 ai = d. |P (n, d)| denotes the number of such tuples. Then the map

Symd
n → C|P (n,d)|, f → (coeffa f | a ∈ P (n, d))

is an isomorphism of vector spaces.

Proof. Injectivity is clear. Surjectivity follows from the following construction. Let a ∈ P (n, d).

Denote

ma(x1, . . . , xn) =
∑

a′1,...,a
′
n

x
a′1
1 · · ·x

a′n
n ,
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where the sum goes over all distinct permutations of the sequence (a1, . . . , an). Then we have for

all b ∈ P (n, d)

coeffbma =

1 (b = a)

0 (b 6= a).

�

The above proposition in particular means that ma where a goes over the set of sequences

a = (a1 ≥ a2 ≥ · · · ≥ an ≥ 0) form a basis of Symn.

3.2. Elementary symmetric polynomials. These are defined for k = 1, 2, . . . , n by

ek(x1, . . . , xn) =
∑

1≤i1<i2<...<ik≤n
xi1xi2 · · ·xik .

We have

Theorem 3.3. The ring of symmetric functions is isomorphic to the ring of polynomials in the

elementary symmetric polynomials. In other words, for any f ∈ Symn there exists a unique

polynomial in n variables g such that

f(x1, . . . , xn) = g(e1(x1, . . . , xn), e2(x1, . . . , xn), . . . , en(x1, . . . , xn)).

Proof. Without loss of generality assume 0 6= f ∈ Symd
n. The main idea is to look at the main

term. Write f as the sum of terms, where each term is a monomial in x1, . . . , xn with some

non-zero coefficient in C. The main term is defined as follows:

Choose all terms where the power of x1 is maximal, among those choose all terms where the

power of x2 is maximal, and so on. In the end of this procedure only one term will be left. This

is is the main term.

In other words, the main term is the first term in the reverse lexicographic order.

The strategy is to cook up a product of ei is such a way that the main term will be the same

as the one of f , and then subtract it from f . Then proceed by “killing” the remaining main term

and so on until we get zero.

We can find that

main term(eb11 e
b2
2 · · · e

bn
n ) = xb1+b2+···+bn1 xb2+···bn2 · · ·xbnn .

So to kill the main term with xa11 · · ·xann we use b1 = a1 − a2, . . . bi = ai − ai+1,. . . bn = an.

Another way to look at this construction is as follows. Let us form a matrix by decomposing

the products eb11 · · · ebnn in the monomial basis. Order the elements of P (n, d) in the reverse

lexicographic order, so that we obtain a sequence of tuples a(1), a(2), . . .. For each i compute the

tuple b(i) by the rule above. The matrix is defined by

Mi,j = coeffa(j) e
b
(i)
1
1 · · · eb

(i)
n
n .



8 SYMMETRIC FUNCTIONS IN GEOMETRY

The matrix is upper triangluar with 1 on the diagonal. Therefore it is a linear isomorphism,

which is equivalent to the statement of the theorem. �

4. Symmetric functions in infinitely many variables (Lecture 2)

4.1. Construction. For a fixed d ∈ Z≥0 consider the sequence of spaces and maps between

them:

Symd
1 ← Symd

2 ← Symd
3 ← · · · ,

where the maps are given as follows (res stands for “restriction”):

resn : Symd
n → Symd

n−1, resn f(x1, . . . , xn) = f(x1, . . . , xn−1, 0).

Definition 4.1. A symmetric function of degree d in infinitely many variables is an infinite

sequence f1, f2, . . . where fn ∈ Symd
n such that for any n we have

fn−1 = resn fn.

The space of symmetric functions of degree d in infinitely many variables is denoted by Symd
∞.

Proposition 4.2. If n ≥ d then Symd
∞ = Symd

n.

Proof. Look how resn looks like in the monomial basis:

resnma1,...,an =

0 (an 6= 0)

ma1,...,an−1 (an = 0).

So we have that resn is surjective for any n, and its kernel is the span of ma1,...,an where a1 ≥
a2 ≥ · · · ≥ an > 0. In particular, if n > d the the kernel is zero, so resn is an isomorphism. For

any n ≥ d an element f ∈ Symd
∞ is completely determined by its component fn. �

Sometimes we consider symmetric functions of “mixed degree”:

Definition 4.3. A symmetric function in infinitely many variables is a sum for some d

f = f (0) + f (1) + · · · f (d),

where f (i) ∈ Symi
∞.

4.2. Monomial and elementary symmetric functions.

4.2.1. Notations. A partition is a sequence of integers λ1 ≥ λ2 ≥ . . . ≥ λm > 0. We call m the

length and denote it by l(λ). The sum
∑l(λ)

i=1 λi is called the size and is denoted by |λ|. The set

of partitions is denoted by P. The notation λ ` n means that λ is a partition of size n.

For any λ ∈ P, the corresponding monomial symmetric function in infinitely many variables is

defined by

mλ(x1, . . . , xn) =

mλ1,...,λl(λ),0,··· ,0(x1, . . . , xn) (n ≥ l(λ))

0 (n < l(λ)).
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It is easy to check, that setting the last variable xn equal to zero, we obtain the corresponding

function in n − 1 variables, so the condition of Definition 4.1 is satisfied. Thus we obtain a

symmetric function in infinitely many variables.

Using Propositions 4.2 and 3.2, we obtain

Proposition 4.4. The elements mλ ∈ Sym∞ where λ goes over the set of all partitions P form

a basis of Sym∞.

We also define for k = 1, 2, . . .

ek(x1, . . . , xn) =

ek(x1, . . . , xn) (n ≥ k),

0 (n < k).

Again, this gives a well-defined element of Sym∞.

Using Proposition 4.2, we extend Theorem 3.3 to symmetric functions in infinitely many vari-

ables

Theorem 4.5. Any element f ∈ Sym∞ can be uniquely written as a polynomial of e1, e2, . . ..

It is convenient when writing symmetric functions in infinitely many variables not to mention

the number of variables at all.

5. Relations between ek, hk, pk (Lecture 2)

We also introduce the complete homogeneous symmetric polynomials

hk(x1, x2, . . .) =
∑

i1≤i2≤···≤ik

xi1xi2 · · ·xik ,

and the power sums

pk(x1, x2, . . .) =
∑
i

xki .

The following relations are quite easy to prove:

pk = m(k),

where (k) denotes the sequence consisting of a single number k.

ek = m(1, 1, . . . , 1)︸ ︷︷ ︸
k ones

.

hk =
∑
λ`k

mλ.

To show more algebraic relations connecting ek, hk, pk it is convenient to use the formal power

series ring Sym∞[[t]]. Then we have
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Proposition 5.1.

1 +

∞∑
k=1

hkt
k =

1

1 +
∑∞

k=1(−1)kektk
= exp

( ∞∑
k=1

pkt
k

k

)
,

1 +

∞∑
k=1

(−1)kekt
k =

1

1 +
∑∞

k=1 hkt
k
,

∞∑
k=1

pkt
k

k
= log

(
1 +

∞∑
k=1

hkt
k

)
= − log

(
1 +

∞∑
k=1

(−1)kekt
k

)
.

Proof. Each of these identities corresponds to an infinite sequence of identities, and to show each

of them, by Proposition 4.2, it is enough to check the corresponding identity for finitely many

variables. We clearly have

n∏
i=1

(1− txi) = 1 +

∞∑
k=1

(−1)kek(x1, . . . , xn)tk

and

(5.1)
n∏
i=1

1

1− txi
= 1 +

∞∑
k=1

hk(x1, . . . , xn)tk.

This implies the first identity. Furthermore, we have

log

(
n∏
i=1

1

1− txi

)
=

n∑
i=1

log

(
1

1− txi

)
=

n∑
i=1

∞∑
m=1

xmi t
m

m
=

∞∑
m=1

pmt
m

m
.

Putting these together and using the fact that exp is inverse to log we deduce all these identities.

�

These identities allow us to express hk, pk, ek in terms of each other. Therefore we have

Corollary 5.2. Any element f ∈ Sym∞ can be uniquely written as a polynomial of h1, h2, . . ..

Corollary 5.3. Any element f ∈ Sym∞ can be uniquely written as a polynomial of p1, p2, . . ..

6. Algebraic manipulations (Practice 3-4)

6.1. Conversion from monomial to elementary symmetric functions. We continue to

illustrate proof of Theorem 3.3. Let us compute the matrix

Mi,j = coeffa(j) e
b
(i)
1
1 · · · eb

(i)
n
n .

We pick n = 4 (the size of the partitions) and list all partitions n in the reverse lexicographic

order:

sage : n=4
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sage : ps=l i s t ( P a r t i t i o n s (n) )

sage : ps

[ [ 4 ] , [ 3 , 1 ] , [ 2 , 2 ] , [ 2 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ] ]

sage : sorted ( ps )

[ [ 1 , 1 , 1 , 1 ] , [ 2 , 1 , 1 ] , [ 2 , 2 ] , [ 3 , 1 ] , [ 4 ] ]

sage : l i s t ( reversed ( sorted ( ps ) ) )

[ [ 4 ] , [ 3 , 1 ] , [ 2 , 2 ] , [ 2 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ] ]

sage : ps=l i s t ( reversed ( sorted ( ps ) ) )

Next we write a function that turns a partition λ into the corresponding sequence a:

sage : def lambda2a ( lam ) :

. . . . : r e s = [ ]

. . . . : for i in range ( len ( lam )−1) :

. . . . : r e s . append ( lam [ i ]−lam [ i +1])

. . . . : r e s . append ( lam [−1])

. . . . : return r e s

. . . . :

sage : lambda2a ( [ 3 , 2 ] )

[ 1 , 2 ]

sage : lambda2a ( [ 3 , 1 ] )

[ 2 , 1 ]

Remember that this means that the main term of e1e
2
2 is m3,2, the main term of e21e2 is m3,1. Let

us verify this. We implement elementary symmetric functions:

sage : R=PolynomialRing (QQ, names=[ ’ x ’+str ( i ) for i in range (n) ] )

sage : R

Mul t i va r i a t e Polynomial Ring in x0 , x1 , x2 , x3 over Rat iona l F i e ld

sage : def elementary (k , n) :

. . . . : i f n<k :

. . . . : return 0

. . . . : i f n==k :

. . . . : return prod (R. gen ( i ) for i in range (n) )

. . . . : i f k==1:

. . . . : return sum(R. gen ( i ) for i in range (n) )

. . . . : return elementary (k , n−1) + R. gen (n−1)∗ elementary (k−1,n−1)

. . . . :
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sage : e lementary (1 , 3 )

x0 + x1 + x2

sage : e lementary (2 , 3 )

x0∗x1 + x0∗x2 + x1∗x2

sage : e lementary (3 , 3 )

x0∗x1∗x2

sage : e lementary (3 , 4 )

x0∗x1∗x2 + x0∗x1∗x3 + x0∗x2∗x3 + x1∗x2∗x3

sage : e lementary (2 , 4 )

x0∗x1 + x0∗x2 + x1∗x2 + x0∗x3 + x1∗x3 + x2∗x3

Now we compute the list of a-sequences and for each a-sequence the corresponding product of

the elementary symmetric functions:

sage : a a l i s t =[ lambda2a ( lam ) for lam in ps ]

sage : a a l i s t

[ [ 4 ] , [ 2 , 1 ] , [ 0 , 2 ] , [ 1 , 0 , 1 ] , [ 0 , 0 , 0 , 1 ] ]

sage : e l l i s t =[prod ( e lementary ( i +1,n) ˆ a i for i , a i in enumerate( aa ) )

for aa in a a l i s t ]

sage : e l l i s t

[ x0ˆ4 + 4∗x0ˆ3∗x1 + 6∗x0ˆ2∗x1ˆ2 + 4∗x0∗x1ˆ3 + x1ˆ4 + 4∗x0ˆ3∗x2 + 12∗x0

ˆ2∗x1∗x2 + 12∗x0∗x1ˆ2∗x2 + 4∗x1ˆ3∗x2 + 6∗x0ˆ2∗x2ˆ2 + 12∗x0∗x1∗x2ˆ2

+ 6∗x1ˆ2∗x2ˆ2 + 4∗x0∗x2ˆ3 + 4∗x1∗x2ˆ3 + x2ˆ4 + 4∗x0ˆ3∗x3 + 12∗x0ˆ2∗
x1∗x3 + 12∗x0∗x1ˆ2∗x3 + 4∗x1ˆ3∗x3 + 12∗x0ˆ2∗x2∗x3 + 24∗x0∗x1∗x2∗x3

+ 12∗x1ˆ2∗x2∗x3 + 12∗x0∗x2ˆ2∗x3 + 12∗x1∗x2ˆ2∗x3 + 4∗x2ˆ3∗x3 + 6∗x0

ˆ2∗x3ˆ2 + 12∗x0∗x1∗x3ˆ2 + 6∗x1ˆ2∗x3ˆ2 + 12∗x0∗x2∗x3ˆ2 + 12∗x1∗x2∗x3

ˆ2 + 6∗x2ˆ2∗x3ˆ2 + 4∗x0∗x3ˆ3 + 4∗x1∗x3ˆ3 + 4∗x2∗x3ˆ3 + x3 ˆ4 ,

x0ˆ3∗x1 + 2∗x0ˆ2∗x1ˆ2 + x0∗x1ˆ3 + x0ˆ3∗x2 + 5∗x0ˆ2∗x1∗x2 + 5∗x0∗x1ˆ2∗
x2 + x1ˆ3∗x2 + 2∗x0ˆ2∗x2ˆ2 + 5∗x0∗x1∗x2ˆ2 + 2∗x1ˆ2∗x2ˆ2 + x0∗x2ˆ3 +

x1∗x2ˆ3 + x0ˆ3∗x3 + 5∗x0ˆ2∗x1∗x3 + 5∗x0∗x1ˆ2∗x3 + x1ˆ3∗x3 + 5∗x0

ˆ2∗x2∗x3 + 12∗x0∗x1∗x2∗x3 + 5∗x1ˆ2∗x2∗x3 + 5∗x0∗x2ˆ2∗x3 + 5∗x1∗x2

ˆ2∗x3 + x2ˆ3∗x3 + 2∗x0ˆ2∗x3ˆ2 + 5∗x0∗x1∗x3ˆ2 + 2∗x1ˆ2∗x3ˆ2 + 5∗x0∗
x2∗x3ˆ2 + 5∗x1∗x2∗x3ˆ2 + 2∗x2ˆ2∗x3ˆ2 + x0∗x3ˆ3 + x1∗x3ˆ3 + x2∗x3 ˆ3 ,
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x0ˆ2∗x1ˆ2 + 2∗x0ˆ2∗x1∗x2 + 2∗x0∗x1ˆ2∗x2 + x0ˆ2∗x2ˆ2 + 2∗x0∗x1∗x2ˆ2 +

x1ˆ2∗x2ˆ2 + 2∗x0ˆ2∗x1∗x3 + 2∗x0∗x1ˆ2∗x3 + 2∗x0ˆ2∗x2∗x3 + 6∗x0∗x1∗x2

∗x3 + 2∗x1ˆ2∗x2∗x3 + 2∗x0∗x2ˆ2∗x3 + 2∗x1∗x2ˆ2∗x3 + x0ˆ2∗x3ˆ2 + 2∗x0

∗x1∗x3ˆ2 + x1ˆ2∗x3ˆ2 + 2∗x0∗x2∗x3ˆ2 + 2∗x1∗x2∗x3ˆ2 + x2ˆ2∗x3 ˆ2 ,

x0ˆ2∗x1∗x2 + x0∗x1ˆ2∗x2 + x0∗x1∗x2ˆ2 + x0ˆ2∗x1∗x3 + x0∗x1ˆ2∗x3 + x0ˆ2∗
x2∗x3 + 4∗x0∗x1∗x2∗x3 + x1ˆ2∗x2∗x3 + x0∗x2ˆ2∗x3 + x1∗x2ˆ2∗x3 + x0∗
x1∗x3ˆ2 + x0∗x2∗x3ˆ2 + x1∗x2∗x3 ˆ2 ,

x0∗x1∗x2∗x3 ]

sage :

We can see that the leading terms x40, x
3
0x1, . . . are precisely given by the partitions (4), (3, 1), . . ..

Next let us compute the matrix of all coefficients of the products of elementary symmetric func-

tions. We create the list of all monomials:

sage : mon l i s t =[prod (R. gen ( i ) ˆ a i for i , a i in enumerate( lam ) ) for lam

in ps ]

sage : mon l i s t

[ x0 ˆ4 , x0ˆ3∗x1 , x0ˆ2∗x1 ˆ2 , x0ˆ2∗x1∗x2 , x0∗x1∗x2∗x3 ]

And then we create a matrix

sage : M=matrix ( len ( ps ) , len ( ps ) )

sage : M

[ 0 0 0 0 0 ]

[ 0 0 0 0 0 ]

[ 0 0 0 0 0 ]

[ 0 0 0 0 0 ]

[ 0 0 0 0 0 ]

And finally we put the coefficients into the matrix:

sage : for i in range ( len ( ps ) ) :

. . . . : for j in range ( len ( ps ) ) :

. . . . : M[ i , j ] = e l l i s t [ i ] . m o n o m i a l c o e f f i c i e n t ( mon l i s t [ j ] )

. . . . :

sage : M

[ 1 4 6 12 24 ]

[ 0 1 2 5 12 ]
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[ 0 0 1 2 6 ]

[ 0 0 0 1 4 ]

[ 0 0 0 0 1 ]

As expected, the resulting matrix is upper-triangular with 1 on the diagonal, so it is invertible.

sage : M. i n v e r s e ( )

[ 1 −4 2 4 −4]

[ 0 1 −2 −1 4 ]

[ 0 0 1 −2 2 ]

[ 0 0 0 1 −4]

[ 0 0 0 0 1 ]

We can do the same for n = 5:

sage : n=5

sage : ps=l i s t ( P a r t i t i o n s (n) )

sage : ps=l i s t ( reversed ( sorted ( ps ) ) )

sage : ps

[ [ 5 ] , [ 4 , 1 ] , [ 3 , 2 ] , [ 3 , 1 , 1 ] , [ 2 , 2 , 1 ] , [ 2 , 1 , 1 , 1 ] , [ 1 , 1 , 1 , 1 ,

1 ] ]

sage : a a l i s t =[ lambda2a ( lam ) for lam in ps ]

sage : R=PolynomialRing (QQ, names=[ ’ x ’+str ( i ) for i in range (n) ] )

sage : e l l i s t =[prod ( e lementary ( i +1,n) ˆ a i for i , a i in enumerate( aa ) )

for aa in a a l i s t ]

sage : mon l i s t =[prod (R. gen ( i ) ˆ a i for i , a i in enumerate( lam ) ) for lam

in ps ]

sage : e l l i s t

[ x0ˆ5 + 5∗x0ˆ4∗x1 + 10∗x0ˆ3∗x1ˆ2 + 10∗x0ˆ2∗x1ˆ3 + . . .

sage : mon l i s t

[ x0 ˆ5 ,

x0ˆ4∗x1 ,

x0ˆ3∗x1 ˆ2 ,

x0ˆ3∗x1∗x2 ,

x0ˆ2∗x1ˆ2∗x2 ,
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x0ˆ2∗x1∗x2∗x3 ,

x0∗x1∗x2∗x3∗x4 ]

sage : M=matrix ( len ( ps ) , len ( ps ) )

sage : M

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 ]

[ 0 0 0 0 0 0 0 ]

sage : for i in range ( len ( ps ) ) :

. . . . : for j in range ( len ( ps ) ) :

. . . . : M[ i , j ] = e l l i s t [ i ] . m o n o m i a l c o e f f i c i e n t ( mon l i s t [ j ] )

. . . . :

sage : M

[ 1 5 10 20 30 60 120 ]

[ 0 1 3 7 12 27 60 ]

[ 0 0 1 2 5 12 30 ]

[ 0 0 0 1 2 7 20 ]

[ 0 0 0 0 1 3 10 ]

[ 0 0 0 0 0 1 5 ]

[ 0 0 0 0 0 0 1 ]

sage : M. i n v e r s e ( )

[ 1 −5 5 5 −5 −5 5 ]

[ 0 1 −3 −1 5 1 −5]

[ 0 0 1 −2 −1 5 −5]

[ 0 0 0 1 −2 −1 5 ]

[ 0 0 0 0 1 −3 5 ]

[ 0 0 0 0 0 1 −5]

[ 0 0 0 0 0 0 1 ]
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Recall that the inverse matrix can be used to express the elements of the monomial basis in terms

of ei. For instance let us use the first row of the matrix M−1:

sage : e l l i s t [0]−5∗ e l l i s t [1 ]+5∗ e l l i s t [2 ]+5∗ e l l i s t [3]−5∗ e l l i s t

[4]−5∗ e l l i s t [5 ]+5∗ e l l i s t [ 6 ]

x0ˆ5 + x1ˆ5 + x2ˆ5 + x3ˆ5 + x4ˆ5

6.2. Using SymmetricFunctions in SAGE. SAGE has a library for symmetric functions in

infinitely many variables, so we do not need to do the computations by hand. Here are some

examples:

sage : Sym=SymmetricFunctions (QQ)

sage : Sym

Symmetric Functions over Rat iona l F i e ld

sage : ee=Sym. elementary ( )

sage : ee

Symmetric Functions over Rat iona l F i e ld in the elementary b a s i s

sage : mm=Sym. monomial ( )

sage : mm

Symmetric Functions over Rat iona l F i e ld in the monomial b a s i s

sage : mm[ 3 , 2 ]

m[ 3 , 2 ]

sage : mm[ 5 ]

m[ 5 ]

sage : ee (mm[ 5 ] )

e [ 1 , 1 , 1 , 1 , 1 ] − 5∗ e [ 2 , 1 , 1 , 1 ] + 5∗ e [ 2 , 2 , 1 ] + 5∗ e [ 3 , 1 , 1 ] − 5∗ e

[ 3 , 2 ] − 5∗ e [ 4 , 1 ] + 5∗ e [ 5 ]

sage : ee (mm[ 4 , 1 ] )

e [ 2 , 1 , 1 , 1 ] − 3∗ e [ 2 , 2 , 1 ] − e [ 3 , 1 , 1 ] + 5∗ e [ 3 , 2 ] + e [ 4 , 1 ] − 5∗ e

[ 5 ]

6.3. Power series identities. SAGE can compute with formal power series (to a given finite

number of terms), as we had in Section 5. We check the identities of Proposition 5.1:

sage : Rt.<t>=PowerSeriesRing (QQ)

sage : Rt

Power S e r i e s Ring in t over Rat iona l F i e ld

sage : 1/(1− t )
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1 + t + t ˆ2 + t ˆ3 + t ˆ4 + t ˆ5 + t ˆ6 + t ˆ7 + t ˆ8 + t ˆ9 + t ˆ10 + t ˆ11 +

t ˆ12 + t ˆ13 + t ˆ14 + t ˆ15 + t ˆ16 + t ˆ17 + t ˆ18 + t ˆ19 + O( t ˆ20)

sage : Rt.<t>=PowerSeriesRing (R)

sage : Rt

Power S e r i e s Ring in t over Mu l t i va r i a t e Polynomial Ring in x0 , x1 , x2

, x3 , x4 over Rat iona l F i e ld

sage : E=sum( e lementary ( i , n ) ∗ t ˆ i for i in range ( 1 , 6 ) )+1

sage : 1/E+O( t ˆ4)

1 + (−x0 − x1 − x2 − x3 − x4 ) ∗ t + ( x0ˆ2 + x0∗x1 + x1ˆ2 + x0∗x2 + x1∗x2

+ x2ˆ2 + x0∗x3 + x1∗x3 + x2∗x3 + x3ˆ2 + x0∗x4 + x1∗x4 + x2∗x4 + x3

∗x4 + x4 ˆ2) ∗ t ˆ2 + (−x0ˆ3 − x0ˆ2∗x1 − x0∗x1ˆ2 − x1ˆ3 − x0ˆ2∗x2 − x0∗
x1∗x2 − x1ˆ2∗x2 − x0∗x2ˆ2 − x1∗x2ˆ2 − x2ˆ3 − x0ˆ2∗x3 − x0∗x1∗x3 −
x1ˆ2∗x3 − x0∗x2∗x3 − x1∗x2∗x3 − x2ˆ2∗x3 − x0∗x3ˆ2 − x1∗x3ˆ2 − x2∗x3

ˆ2 − x3ˆ3 − x0ˆ2∗x4 − x0∗x1∗x4 − x1ˆ2∗x4 − x0∗x2∗x4 − x1∗x2∗x4 − x2

ˆ2∗x4 − x0∗x3∗x4 − x1∗x3∗x4 − x2∗x3∗x4 − x3ˆ2∗x4 − x0∗x4ˆ2 − x1∗x4

ˆ2 − x2∗x4ˆ2 − x3∗x4ˆ2 − x4 ˆ3) ∗ t ˆ3 + O( t ˆ4)

sage : l og (E+O( t ˆ4) )

( x0 + x1 + x2 + x3 + x4 ) ∗ t + (−1/2∗x0ˆ2 − 1/2∗x1ˆ2 − 1/2∗x2ˆ2 − 1/2∗x3

ˆ2 − 1/2∗x4 ˆ2) ∗ t ˆ2 + (1/3∗ x0ˆ3 + 1/3∗x1ˆ3 + 1/3∗x2ˆ3 + 1/3∗x3ˆ3 +

1/3∗x4 ˆ3) ∗ t ˆ3 + O( t ˆ4)

6.4. More combinatorics. The entries of matrix M are positive integers, and so they should

have some combinatorial interpretation. As an exercise, we suggest to find such an interpretation.

Let us look at M for n = 6:

1 6 15 30 20 60 120 90 180 360 720

0 1 4 9 6 22 48 36 78 168 360

0 0 1 2 2 8 18 15 34 78 180

0 0 0 1 0 3 10 6 18 48 120

0 0 0 0 1 3 6 6 15 36 90

0 0 0 0 0 1 3 3 8 22 60

0 0 0 0 0 0 1 0 2 9 30

0 0 0 0 0 0 0 1 2 6 20

0 0 0 0 0 0 0 0 1 4 15

0 0 0 0 0 0 0 0 0 1 6

0 0 0 0 0 0 0 0 0 0 1





18 SYMMETRIC FUNCTIONS IN GEOMETRY

We can notice 2 extra zeroes: one in position M4,5, and another one on M7,8. This correspond

to pairs of partitions (4, 1, 1), (3, 3) and (3, 1, 1, 1), (2, 2, 2). Explanation for these zeroes is given

by the dominance order on partitions.

Definition 6.1. If µ and λ are partitions of n, we say that µ dominates λ (denoted µ � λ) if for

all i we have
i∑

j=1

µj ≥
i∑

j=1

λj .

We treat µj as zero if j > l(µ).

It turns out that

Proposition 6.2. Mi,j 6= 0 if and only if λ(i) � λ(j), where λ(i) denotes the partition correspond-

ing to the row i of the matrix M .

If λ(i) � λ(j), then λ(i) greater than λ(j) lexicographically, so i ≤ j, but the inverse statement is

not true. Indeed, we have (4, 1, 1) is greater than (3, 3) lexicographically, but not in the dominance

order. This explains the zeroes.

In the rest of the class we try to sketch proof of Proposition 6.2.

7. Schur functions (Lecture 3)

Let us begin by recalling the Vandermonde formula:

Proposition 7.1. For any n ≥ 1 we have

det(xn−ji )ni,j=1 =
∏

1≤i<j≤n
(xi − xj).

Proof. The matrix on the left hand side looks like

D(x) =


xn−11 xn−21 · · · 1

xn−12 xn−22 · · · 1
...

...
...

xn−1n xn−2n · · · 1


First observe that setting xi = xj for any i 6= j makes the determinant zero. Therefore the

determinant, as a polynomial in x1, . . . , xj must be divisible by xi − xj . Since all differences

xi − xj are relatively prime, it must be divisible by the product

∆(x) :=
∏

1≤i<j≤n
(xi − xj).

So we have D(x) = ∆(x)U(x) for some polynomial U(x). We have that ∆(x) and D(x) are both

homogeneous of degrees
(
n
2

)
. So U must be constant. Finally we notice that the main term of
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both sides is given by

xn−11 xn−22 · · ·xn−1.

So we necessarily have U(x) = 1. �

We will use the notation

∆(x) :=
∏

1≤i<j≤n
(xi − xj).

It is interesting to consider the generalized Vandermonde determinant for any sequence a =

(a1, . . . , an), a1 > a2 > . . . > an ≥ 0:

(7.1) Da(x) := det(x
aj
i )ni,j=1 = det


xa11 xa21 · · · xan1
xa12 xa22 · · · xan2

...
...

...

xa1n xa2n · · · xann


Let us first list some properties of Da(x) that are clear from the definition:

(i) Da(x) is a homogeneous polynomial of degree
∑

i=1 ai.

(ii) For any i < j we have Da(x1, . . . , xi, . . . , xj , . . . , xn) = −Da(x1, . . . , xj , . . . , xi, . . . , xn),

i.e. Da(x) is antisymmetric.

(iii) In particular, if we set xi = xj for i 6= j, then Da(x) vanishes.

(iv) The main term of Da(x) is xa11 · · ·xann .

From the property (iii) we know that Da(x) is divisible by ∆(x). Let us denote

Ua(x) :=
Da(x)

∆(x)
.

Now we have Ua(x) ∈ Sym
∑n
i=1 ai−(n2)

n . Notice that for a partition λ we can define a sequence

a by ai = λi + n − i (we define λi = 0 if i > l(λ)). Then we obtain a sequence satisfying

a1 > a2 > . . . > an >= 0. In fact, this is a bijection between partitions of length <= n and

strictly decreasing sequences of length n.

Definition 7.2. For any partition λ we define the Schur function in n variables by

sλ(x) := Uλ1+n−1,λ2+n−2,...,λn(x).

Proposition 7.3. (i) For any partition λ of length ≤ n we have sλ(x) ∈ Sym
|λ|
n .

(ii) For any λ ∈ P the following rule defines a symmetric function in infinitely many vari-

ables, for any n ≥ 1 we set

sλ(x1, . . . , xn) =

sλ(x1, . . . , xn) (n ≥ l(λ))

0 (n < l(λ)).

(iii) If n ≤ l(λ), the main term of sλ(x1, . . . , xn) is xλ11 · · ·x
λl(λ)
l(λ) .
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Proof. The property (i) follows from the fact that both Da(x) and ∆(x) are anti-symmetric.

To prove (ii) we need to show that for λ of length ≤ n we have

sλ(x1, . . . , xn−1, 0) =

sλ(x1, . . . , xn−1) (l(λ) < n)

0 otherwise.

Suppose l(λ) ≥ n. Then for the corresponding sequence a we have an > 0, so the determinant

(7.1) vanishes. If on the other hand l(λ) < n, then an = 0. In this case we obtain

Da(x1, . . . , xn−1, 0) = x1 · · ·xnDa1−1,a2−1,...,an−1−1(x1, . . . , xn−1),

which leads to the right formula also in this case.

To prove (iii) we just divide the main term of Da(x) by the main term of ∆(x). �

Now it makes sense to ask how to express sλ in terms of other symmetric functions. We have

Theorem 7.4 (Jacobi-Trudi formula). For any partition λ

(7.2) sλ = det(hλi+j−i)
l(λ)
i,j=1,

where we set h0 = 1 and hi = 0 for i < 0.

Proof. Let us expand Ua(x) in x1. First we expand the determinant (7.1) in the first row:

Da(x) =
n∑
i=1

(−1)i−1xai1 Da1,...,âi,...,an(x2, . . . , xn).

Here we denote by a1, . . . , âi, . . . , an the sequence obtained by throwing ai away. We also write

∆(x1, . . . , xn) = ∆(x2, . . . , xn)
n∏
i=2

(x1 − xi).

Dividing one by the other we obtain a formula that allows us to compute Ua recursively in the n:

Ua(x) =

∑n
i=1(−1)i−1xai1 Ua1,...,âi,...,an(x2, . . . , xn)∏n

i=2(x1 − xi)
.

The difficulty is that we have to divide one polynomial by another. To calculate this division we

use the following idea: we first replace x1 by z−1 and then expand everything as a power series

in z. Then we will use the fact that the result of the division is a polynomial in z−1.

Ua(z
−1, x2, . . . , xn) =

(
n∑
i=1

(−1)i−1z−aiUa1,...,âi,...,an(x2, . . . , xn)

)
zn−1∏n

i=2(1− xiz)
.

Using (5.1) we can write

1∏n
i=2(1− xiz)

=

∞∑
k=0

h′kz
k,
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where we have denoted h′k = hk(x2, . . . , xn). So we have the following power series expansion of

Ua(z
−1, . . .):

Ua(z
−1, x2, . . . , xn) =

n∑
i=1

∞∑
k=0

(−1)i−1zn−1−ai+kUa1,...,âi,...,an(x2, . . . , xn)h′k.

On the other hand we know, that this expression must be a polynomial in z−1, x2, . . . , xn. So the

terms with n− 1− ai + k > 0 must cancel out. We obtain

Ua(x1, x2, . . . , xn) =
n∑
i=1

ai+1−n∑
k=0

xai+1−n−k
1 Ua1,...,âi,...,an(x2, . . . , xn)h′k.

Using the formula hk =
∑k

i=0 h
′
kx

k−i
1 we can simplify it to

(7.3) Ua(x1, x2, . . . , xn) =
n∑
i=1

(−1)i−1hai+1−nUa1,...,âi,...,an(x2, . . . , xn).

Now we can complete the proof by induction on n. We want to show that Ua(x) = det(hai+j−n)ni,j=1.

So we can assume that this identity holds for the terms Ua1,...,âi,...,an(x2, . . . , xn). Then (7.3) can

be recognized as the expansion of a following determinant in the first row:

Ua(x1, . . . , xn) = det


ha1+1−n h′a1+2−n . . . h′a1+n−n
ha2+1−n h′a2+2−n . . . h′a2+n−n

...
...

...

han+1−n h′an+2−n . . . h′an+n−n

 .

This is almost what we need to show the formula for Ua. The only problem is that we need to

replace h′ by h. We have hk = h′k + x1hk−1 for any k′inZ. So multiplying the first column by x1

and adding it to the second will not change the determinant, and transform h′ into h. Proceeding

in this way column by column we obtain the identity Ua(x) = det(hai+j−n)ni,j=1, which directly

translates into the required identity for sλ(x). �

Remark 7.5. Notice that in Theorem 7.4 we can replace λ by a sequence λ1, . . . , λl(λ), 0, . . . , 0

with arbitrary many zeros. Indeed, if λn = 0 then the last row of the matrix in (7.2) looks like

(0, 0, . . . , 0, 1), so the determinant can be replaced by a smaller one.

8. Experiments with Schur functions (Practice 5)

As before, we try to implement Schur functions by hand first, and later we will use the corre-

sponding SAGE library.

The number of variables is N = 4.

sage : N=4

sage : R = PolynomialRing (QQ, names=[ ’ x ’+str ( i ) for i in range (N) ] )
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sage : R

Mul t i va r i a t e Polynomial Ring in x0 , x1 , x2 , x3 over Rat iona l F i e ld

sage : xs = R. gens ( )

sage : xs

( x0 , x1 , x2 , x3 )

We write the function schur step by step to see the intermediate results

sage : def schur ( lam ) :

. . . . : lam = l i s t ( lam )

. . . . : while len ( lam )<N:

. . . . : lam . append (0 )

. . . . : for i in range (N) :

. . . . : lam [ i ] += N−1− i

. . . . : print lam

. . . . :

sage : schur ( [ 2 ] )

[ 5 , 2 , 1 , 0 ]

sage : def schur ( lam ) :

. . . . : lam = l i s t ( lam )

. . . . : while len ( lam )<N:

. . . . : lam . append (0 )

. . . . : for i in range (N) :

. . . . : lam [ i ] += N−1− i

. . . . : a = lam

. . . . : M = matrix (R, N, N)

. . . . : for i in range (N) :

. . . . : for j in range (N) :

. . . . : M[ i , j ]= xs [ i ] ˆ a [ j ]

. . . . : print M

. . . . :

sage : schur ( [ 2 ] )

[ x0ˆ5 x0ˆ2 x0 1 ]

[ x1ˆ5 x1ˆ2 x1 1 ]

[ x2ˆ5 x2ˆ2 x2 1 ]

[ x3ˆ5 x3ˆ2 x3 1 ]

sage : def schur0 ( lam ) :
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. . . . : lam = l i s t ( lam )

. . . . : while len ( lam )<N:

. . . . : lam . append (0 )

. . . . : for i in range (N) :

. . . . : lam [ i ] += N−1− i

. . . . : a = lam

. . . . : M = matrix (R, N, N)

. . . . : for i in range (N) :

. . . . : for j in range (N) :

. . . . : M[ i , j ] = xs [ i ] ˆ a [ j ]

. . . . : return M. det ( )

. . . . :

sage : schur0 ( [ 2 ] )

x0ˆ5∗x1ˆ2∗x2 − x0ˆ2∗x1ˆ5∗x2 − x0ˆ5∗x1∗x2ˆ2 + x0∗x1ˆ5∗x2ˆ2 + x0ˆ2∗x1∗x2

ˆ5 − x0∗x1ˆ2∗x2ˆ5 − x0ˆ5∗x1ˆ2∗x3 + x0ˆ2∗x1ˆ5∗x3 + x0ˆ5∗x2ˆ2∗x3 − x1

ˆ5∗x2ˆ2∗x3 − x0ˆ2∗x2ˆ5∗x3 + x1ˆ2∗x2ˆ5∗x3 + x0ˆ5∗x1∗x3ˆ2 − x0∗x1ˆ5∗
x3ˆ2 − x0ˆ5∗x2∗x3ˆ2 + x1ˆ5∗x2∗x3ˆ2 + x0∗x2ˆ5∗x3ˆ2 − x1∗x2ˆ5∗x3ˆ2 −
x0ˆ2∗x1∗x3ˆ5 + x0∗x1ˆ2∗x3ˆ5 + x0ˆ2∗x2∗x3ˆ5 − x1ˆ2∗x2∗x3ˆ5 − x0∗x2

ˆ2∗x3ˆ5 + x1∗x2ˆ2∗x3ˆ5

sage : f a c t o r ( )

(−1) ∗ ( x2 − x3 ) ∗ (−x1 + x2 ) ∗ ( x1 − x3 ) ∗ (−x0 + x2 ) ∗ (−x0 + x1 ) ∗
( x0 − x3 ) ∗ ( x0ˆ2 + x0∗x1 + x1ˆ2 + x0∗x2 + x1∗x2 + x2ˆ2 + x0∗x3 +

x1∗x3 + x2∗x3 + x3 ˆ2)

What we call schur0 is not the Schur function yet, it is the determinant, we still need to divide

by ∆(x):

sage : def schur ( lam ) :

. . . . : r e s = schur0 ( lam )

. . . . : for j in range (N) :

. . . . : for i in range ( j ) :

. . . . : r e s /= xs [ i ]−xs [ j ]

. . . . : return r e s

. . . . :

sage : schur ( [ 2 ] )

x0ˆ2 + x0∗x1 + x1ˆ2 + x0∗x2 + x1∗x2 + x2ˆ2 + x0∗x3 + x1∗x3 + x2∗x3 +

x3ˆ2
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sage : schur ( [ 1 ] )

x0 + x1 + x2 + x3

sage : schur ( [ 0 ] )

1

sage : schur ( [ ] )

1

sage : schur ( [ 1 , 1 ] )

x0∗x1 + x0∗x2 + x1∗x2 + x0∗x3 + x1∗x3 + x2∗x3

sage : schur ( [ 3 ] )

x0ˆ3 + x0ˆ2∗x1 + x0∗x1ˆ2 + x1ˆ3 + x0ˆ2∗x2 + x0∗x1∗x2 + x1ˆ2∗x2 + x0∗x2

ˆ2 + x1∗x2ˆ2 + x2ˆ3 + x0ˆ2∗x3 + x0∗x1∗x3 + x1ˆ2∗x3 + x0∗x2∗x3 + x1∗
x2∗x3 + x2ˆ2∗x3 + x0∗x3ˆ2 + x1∗x3ˆ2 + x2∗x3ˆ2 + x3ˆ3

So we implemented the Schur function and computed a few examples. For instance, we can

recognize that s3 = h3, s2 = h2, s1 = h1, s1,1 = e2.

After we feel that we understand the definition of Schur functions, we can use the SAGE library.

We create various symmetric function bases:

Sym = SymmetricFunctions (QQ)

s s = Sym. schur ( )

s s

hh = Sym. homogeneous ( )

ee = Sym. elementary ( )

mm = Sym. monomial ( )

Then we try to expand Schur functions in various bases:

sage : s s [ 2 ]

s [ 2 ]

sage : s s [ 3 ]

s [ 3 ]

sage : hh ( s s [ 3 ] )

h [ 3 ]

sage : hh ( s s [ 4 ] )

h [ 4 ]

sage : hh ( s s [ 3 , 1 ] )

h [ 3 , 1 ] − h [ 4 ]

sage : hh ( s s [ 4 , 1 ] )
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h [ 4 , 1 ] − h [ 5 ]

sage : hh ( s s [ 4 , 2 ] )

h [ 4 , 2 ] − h [ 5 , 1 ]

sage : hh ( s s [ 3 , 2 ] )

h [ 3 , 2 ] − h [ 4 , 1 ]

We see that when the partition is given by a single number, we have s(k) = hk. When the partition

has two numbers, it is a 2× 2 determinant consisting of hk. This illustrates Theorem 7.4.

sage : ee ( s s [ 1 , 1 ] )

e [ 2 ]

sage : ee ( s s [ 1 , 1 , 1 ] )

e [ 3 ]

sage : ee ( s s [ 1 , 1 , 1 , 1 ] )

e [ 4 ]

sage : ee ( s s [ 2 , 1 , 1 ] )

e [ 3 , 1 ] − e [ 4 ]

Here we can notice that the Schur functions s(1,...,1) coincide with ek, and if we have 2 then we

probably obtain a 2 × 2 determinant. In fact, the following is true. Let ω : Sym → Sym be the

algebra homomorphism that interchanges ek and hk for each k (by Proposition 5.1, if it sends ek

to hk then automatically hk will go to ek). Then we have ωsλ = sλ′ for any partition λ where

λ′ is the conjugate partition. The conjugate partition is defined by representing λ as a diagram

consisting of rows of boxes of lengths λ1, λ2, . . . , and then applying the symmetry with respect

to the diagonal line. For instance, (1, 1, . . . , 1)︸ ︷︷ ︸
k ones

goes to (k). (2, 1, 1) goes to (3, 1), which explains

the last computation. So there is a second Jacobi-Trudi identity:

sλ = det(hλ′i+j−i)
l(λ′)
i,j=1,

Next, we express in the monomial basis. In the first two evaluations we match the computation

using the library with our own computation. Then we try to experiment.

sage : mm( s s [ 2 , 1 , 1 ] )

3∗m[ 1 , 1 , 1 , 1 ] + m[ 2 , 1 , 1 ]

sage : schur ( [ 2 , 1 , 1 ] )

x0ˆ2∗x1∗x2 + x0∗x1ˆ2∗x2 + x0∗x1∗x2ˆ2 + x0ˆ2∗x1∗x3 + x0∗x1ˆ2∗x3 + x0ˆ2∗
x2∗x3 + 3∗x0∗x1∗x2∗x3 + x1ˆ2∗x2∗x3 + x0∗x2ˆ2∗x3 + x1∗x2ˆ2∗x3 + x0∗
x1∗x3ˆ2 + x0∗x2∗x3ˆ2 + x1∗x2∗x3ˆ2

sage : mm( s s [ 3 , 1 ] )
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3∗m[ 1 , 1 , 1 , 1 ] + 2∗m[ 2 , 1 , 1 ] + m[ 2 , 2 ] + m[ 3 , 1 ]

sage : mm( s s [ 3 , 2 ] )

5∗m[ 1 , 1 , 1 , 1 , 1 ] + 3∗m[ 2 , 1 , 1 , 1 ] + 2∗m[ 2 , 2 , 1 ] + m[ 3 , 1 , 1 ] + m

[ 3 , 2 ]

sage : mm( s s [ 3 , 3 ] )

5∗m[ 1 , 1 , 1 , 1 , 1 , 1 ] + 3∗m[ 2 , 1 , 1 , 1 , 1 ] + 2∗m[ 2 , 2 , 1 , 1 ] + m[ 2 , 2 ,

2 ] + m[ 3 , 1 , 1 , 1 ] + m[ 3 , 2 , 1 ] + m[ 3 , 3 ]

sage : mm( s s [ 3 , 2 , 1 ] )

16∗m[ 1 , 1 , 1 , 1 , 1 , 1 ] + 8∗m[ 2 , 1 , 1 , 1 , 1 ] + 4∗m[ 2 , 2 , 1 , 1 ] + 2∗m[ 2 ,

2 , 2 ] + 2∗m[ 3 , 1 , 1 , 1 ] + m[ 3 , 2 , 1 ]

We see that the main term (appearing last) of sλ is mλ, as we have proved. The coefficients are

always positive integers, which suggests that they may be counting some combinatorial objects.

It is not interesting to compute multiplication in the h, p, e bases:

sage : hh [ 2 ] ∗ hh [ 3 ]

h [ 3 , 2 ]

sage : hh [ 2 ] ∗ hh [ 3 ] ∗ hh [ 1 ]

h [ 3 , 2 , 1 ]

In the Schur basis it gets more interesting. First we try to multiply by s1 = e1 = h1 = p1:

sage : s s [ 2 ] ∗ s s [ 1 ]

s [ 2 , 1 ] + s [ 3 ]

sage : s s [ 3 , 2 , 1 ] ∗ s s [ 1 ]

s [ 3 , 2 , 1 , 1 ] + s [ 3 , 2 , 2 ] + s [ 3 , 3 , 1 ] + s [ 4 , 2 , 1 ]

sage : s s [ 3 , 2 ] ∗ s s [ 1 ]

s [ 3 , 2 , 1 ] + s [ 3 , 3 ] + s [ 4 , 2 ]

sage : s s [ 4 , 2 ] ∗ s s [ 1 ]

s [ 4 , 2 , 1 ] + s [ 4 , 3 ] + s [ 5 , 2 ]

It is surprising that the coefficients are always 1. Upon further investigation we notice, that

the partitions that appear in the expansion of sλs(1) are exactly the partitions whose diagram

contains λ and one extra box. This is the first example of Pieri rules. We next try to multiply

by s(2) = h2, s(3) = h3, etc.:

sage : s s [ 4 , 2 ] ∗ s s [ 2 ]

s [ 4 , 2 , 2 ] + s [ 4 , 3 , 1 ] + s [ 4 , 4 ] + s [ 5 , 2 , 1 ] + s [ 5 , 3 ] + s [ 6 , 2 ]

sage : s s [ 4 , 2 , 1 ] ∗ s s [ 2 ]
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s [ 4 , 2 , 2 , 1 ] + s [ 4 , 3 , 1 , 1 ] + s [ 4 , 3 , 2 ] + s [ 4 , 4 , 1 ] + s [ 5 , 2 , 1 ,

1 ] + s [ 5 , 2 , 2 ] + s [ 5 , 3 , 1 ] + s [ 6 , 2 , 1 ]

sage : s s [ 4 , 2 , 1 ] ∗ s s [ 3 ]

s [ 4 , 3 , 2 , 1 ] + s [ 4 , 4 , 1 , 1 ] + s [ 4 , 4 , 2 ] + s [ 5 , 2 , 2 , 1 ] + s [ 5 , 3 ,

1 , 1 ] + s [ 5 , 3 , 2 ] + s [ 5 , 4 , 1 ] + s [ 6 , 2 , 1 , 1 ] + s [ 6 , 2 , 2 ] + s [ 6 ,

3 , 1 ] + s [ 7 , 2 , 1 ]

sage : s s [ 3 , 2 , 1 ] ∗ s s [ 3 ]

s [ 3 , 3 , 2 , 1 ] + s [ 4 , 2 , 2 , 1 ] + s [ 4 , 3 , 1 , 1 ] + s [ 4 , 3 , 2 ] + s [ 5 , 2 ,

1 , 1 ] + s [ 5 , 2 , 2 ] + s [ 5 , 3 , 1 ] + s [ 6 , 2 , 1 ]

sage : s s [ 3 , 2 , 1 ] ∗ s s [ 4 ]

s [ 4 , 3 , 2 , 1 ] + s [ 5 , 2 , 2 , 1 ] + s [ 5 , 3 , 1 , 1 ] + s [ 5 , 3 , 2 ] + s [ 6 , 2 ,

1 , 1 ] + s [ 6 , 2 , 2 ] + s [ 6 , 3 , 1 ] + s [ 7 , 2 , 1 ]

sage : s s [ 3 , 2 ] ∗ s s [ 2 ]

s [ 3 , 2 , 2 ] + s [ 3 , 3 , 1 ] + s [ 4 , 2 , 1 ] + s [ 4 , 3 ] + s [ 5 , 2 ]

Again we see that all coefficients are 1. How to describe the partitions that appear in the expansion

of sλs(k)? This is given by the full set of Pieri rules. The expansion contains all the partitions

that contain λ and k extra boxes, satisfying the following condition: no two extra boxes are on

top of one another. We do not prove Pieri rules yet. Notice that the e ↔ h symmetry implies

existence of dual Pieri rules, with respect to multiplication by ek.

9. Representations of finite groups (Lecture 4)

We recall the main steps in the theory of representations of finite groups. Assume G is a finite

group of size |G|.

Definition 9.1. A representation of a group G is a vector space V with an operation g, x→ g(x)

for g ∈ G, x ∈ V such that

(i) for a fixed g ∈ G the map x→ gx is linear,

(ii) for a fixed x ∈ V we have 1(x) = x, where 1 ∈ G is the unit element, and (g1g2)(x) =

g1(g2(x)) for any g1, g2 ∈ G.

If V is a representation of G and U ⊂ V is a sub-vector space of V such that GU = U , then

U is called a sub-representation. A sub-representation is said to be non-trivial if U 6= {0} and

U 6= V . If U1, U2 are representations of G then the direct sum U1
⊕
U2 with the diagonal action

of G is also a representation.

Definition 9.2. A representation V is irreducible if there is no non-trivial sub-representation

U ⊂ V .
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We will only consider finite-dimensional representations.

The theory builds on two main lemmas:

Lemma 9.3 (Maschke’s theorem). If V is a representation of G and U ⊂ V is a sub-representation,

then there exists another sub-representation U ′ ⊂ V such that U ∩ U ′ = {0} and U + U ′ = V ,

equivalently V ∼= U ⊕ U ′.

Proof. First construct an arbitrary linear operator ϕ0 : V → V such that ϕ0|U = IdU and

Imϕ0 = U . Then make it commute with the action of G by the following trick. Define ϕ : V → V

by

ϕ(x) =
1

|G|
∑
g∈G

g(ϕ0(g
−1x)) (x ∈ V ).

Now we have ϕ(x) = x for all x ∈ U and Imϕ = U . Moreover ϕ(g(x)) = g(ϕ(x)) for any g ∈ G,

x ∈ V . Let U ′ = Kerϕ. Then U ′ is a sub-representation satisfying the required properties. �

Corollary 9.4. Every finite-dimensional representation can be represented as a direct sum of

irreducible representations.

Definition 9.5. If V and V ′ are representations of G then the space of intertwiners HomG(V, V ′)

is defined as the subspace

HomG(V, V ′) = {f ∈ Hom(V, V ′) : f(g(x)) = g(f(x)) for all g ∈ G, x ∈ V .}

Lemma 9.6 (Schur’s lemma). If V , V ′ are irreducible representations of G then

(i) HomG(V, V ′) = {0} if V and V ′ are not isomorphic,

(ii) HomG(V, V ) = {λ IdV : λ ∈ C}.

Proof. Suppose ϕ ∈ HomG(V, V ′), ϕ 6= 0. Notice that Kerϕ ⊂ V is a sub-representation. Since

ϕ 6= 0, Kerϕ 6= V . Hence Kerϕ = {0} and ϕ is injective. Similarly, Imϕ ⊂ V ′ is a sub-

representation. Since ϕ 6= 0, Imϕ 6= {0}. Hence Imϕ = V ′, so ϕ is surjective. So ϕ must be

an isomorphism and we proved (i). Now suppose V and V ′ are isomorphic, so we can assume

V ′ = V . Let ϕ ∈ HomG(V, V ). If ϕ is not a multiple of the identity matrix, by Jordan normal

form theorem there is an eigenvalue λ ∈ C such that the λ-eigenspace is non-trivial:

Ker(ϕ− λ IdV ) = {x ∈ V : ϕx = λx} 6= {0}, 6= V.

On the other hand, Ker(ϕ−λ IdV ) is clearly a sub-representation. This is contradiction with the

assumption that V is irreducible. �

For a representation V and an element g ∈ G we consider

Tr(g|V ) ∈ C,

the trace of g, viewed as an endomorphism of V . For a fixed V the resulting function on G

g → Tr(g|V )
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is called the character of V .

Recall that the group algebra C[G] is defined as the space of formal linear combinations∑
g∈G fgg, with fg ∈ C for any g ∈ G. The multiplication is defined by expanding the brackets:∑

g∈G
fgg

∑
g∈G

f ′gg

 =
∑
g,h∈G

(fgf
′
g)(gh) =

∑
g∈G

(∑
h∈G

fhf
′
h−1g

)
g.

We will now prove the first orthogonality relation:

Proposition 9.7. Let V, V ′ be irreducible representations of G. Then we have

1

|G|
∑
g∈G

Tr(g−1|V ) Tr(g|V ′) =

1 if V , V ′ are isomorphic

0 otherwise.

Proof. Compute the dimension of the space HomG(V, V ′) in two ways. On the one hand, by Schur

lemma

dim HomG(V, V ′) =

1 if V , V ′ are isomorphic

0 otherwise.

On the other hand, consider Hom(V, V ′) as a representation of G where for each g ∈ G and

ϕ ∈ Hom(V, V ′)

(gϕ)(x) = g(ϕ(g−1x)) (x ∈ V ).

Then ϕ ∈ HomG(V, V ′) if and only if ϕ = gϕ for all g ∈ G. Consider the operator

π =
1

|G|
∑
g∈G

g

acting on Hom(V, V ′). We have π2 = π. Therefore the space Hom(V, V ′) is a direct sum of the

0-eigenspace and the 1-eigenspace for π. We can see that ϕ ∈ HomG(V, V ′) if and only if πϕ = ϕ.

Therefore the subspace HomG(V, V ′) is precisely the 1-eigenspace of π. So we can calculate its

dimension by taking the trace

dim HomG(V, V ′) = Tr(π|Hom(V, V ′)) =
1

|G|
∑
g∈G

Tr(g|Hom(V, V ′)).

For anyA ∈ Hom(V, V ) andB ∈ Hom(V ′, V ′) the trace of the operator Hom(V, V ′)→ Hom(V, V ′)

which sends ϕ to BϕA equals TrATrB. Hence we have

Tr(g|Hom(V, V ′)) = Tr(g|V ′) Tr(g−1|V ).

So we obtain

dim HomG(V, V ′) = Tr(π|Hom(V, V ′)) =
1

|G|
∑
g∈G

Tr(g−1|V ) Tr(g|V ′).

�
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Let Irr(G) be the set of irreducible representations of G up to isomorphism. We construct

now a linear map from the center of the group algebra Z(C[G]) to the vector space of maps from

Irr(G) to C

Φ : Z(C[G])→ Maps(Irr(G),C), Φ

∑
g∈G

fgg

 (V ) =
∑
g∈G

fg Tr(g|V ).

Of course, we can also construct Φ as the restriction to Z(C[G]) of the map C[G]→ Maps(Irr(G),C),

defined by the same formula. The main theorem in the representation theory of finite groups is

Theorem 9.8. The map Φ : Z(C[G])→ Maps(Irr(G),C) is an isomorphism of vector spaces.

Proof. For any irreducible representation V define πV ∈ C[G] by

(9.1) πV =
1

|G|
∑
g∈G

Tr(g−1|V )g.

Then by Proposition 9.7, Φ(πV ) has value 1 on V and 0 on any other irreducible representation.

This implies that the set of irreducible representations is finite and Φ is surjective.

To prove injecivity of Φ suppose f ∈ Ker Φ. On each irreducible representation V the action

of f commutes with the action of any g ∈ G. By Schur lemma, it must be given by some scalar

operator λf,V IdV . By the assumption, Tr(f |V ) = 0. This gives

0 = Tr(f |V ) = λf,V dimV.

Therefore λf,V = 0. So we see that f acts as the zero operator on any irreducible representation.

Since any representation can be represented as a direct sum of irreducibles, we have that f acts

as the zero operator on any representation, in particular on the representation C[G]. Hence

f = 0. �

An element f =
∑

g∈G fgg belongs to Z(C[G]) if and only if we have fg = fhgh−1 for any

g, h ∈ G, in other words, if g → fg is a function on the set of conjugacy classes of G. So the

theorem above identifies two vector spaces Maps(Irr(G),C) and Maps(Conj(G),C), where we

denote by Conj(G) the set of conjugacy classes of G. Hence these vector spaces must have the

same dimension:

Corollary 9.9. The number of irreducible representations equals to the number of conjugacy

classes for any finite group G.

10. Examples of groups and irreducible representations (Practice 6)

We talk about abelian groups, cyclic groups, the smallest non-abelian group is S3. We describe

all irreducible representations in the case of a cyclic group. We introduce character tables and

show how the character table looks like for a cyclic group. Then we construct all 3 irreducible

representations of S3 and compute the character table
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11. Scalar products and the Frobenius character (Lecture 5)

We continue studying the isomorphism

Φ : Z(C[G])→ Maps(Irr(G),C), Φ

∑
g∈G

fgg

 (V ) =
∑
g∈G

fg Tr(g|V ).

For each V ∈ Irr(G) let δV ∈ Maps(Irr(G),C) be defined by

δV (V ′) =

1 if V ∼= V ′,

0 otherwise.

Clearly, the elements δV form a basis of Maps(Irr(G),C). So we introduce a symmetric bilinear

form on Maps(Irr(G),C) in such a way that {δV } form an orthonormal basis:

(δV , δV ′) ==

1 if V ∼= V ′,

0 otherwise.

Next we will transport the form to Z(C[G]) via Φ and compute it there:

Proposition 11.1. Let (·, ·) be the symmetric bilinear form on Z(C[G]) defined by

(f, f ′) = (Φ(f),Φ(f ′)) (f, f ′ ∈ Z(C[G])).

Then we have for any f, f ′

(f, f ′) = |G| coeff1(ff
′).

Proof. It is enough to verify the statement for f = πV , f ′ = πV ′ for any V, V ′ ∈ Irr(G) (see (9.1)).

Recall that Φ(πV ) = δV . So we need to check

|G| coeff1(πV πV ′) =

1 if V ∼= V ′,

0 otherwise.

For any other representation V ′′ we have

πV |V ′′ =

 1
dimV IdV ′′ if V ∼= V ′′,

0 otherwise.

Therefore, if V � V ′ then πV πV ′ = 0. If V ∼= V ′, we have

π2V =
1

dimV
πV .

Directly from (9.1), coeff1(πV ) = 1
|G| dimV . Hence

|G| coeff1(πV πV ) =
|G|

dimV
coeff1(πV ) = 1.

�
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11.1. Symmetric group. Suppose G = Sn, the group of permutations of 1, 2, . . . , n, also called

the symmetric group. We will connect Z(C[Sn]) with the space of symmetric functions of degree

n. The conjugacy classes of Sn correspond to partitions as follows. Let σ ∈ Sn be a permutation.

Draw a graph with vertices 1, . . . , n and arrows going from i to σ(i) for each i. This graph is a

disjoint union of cycles whose lengths we record in a list λ1, λ2, . . . such that λ1 ≥ λ2 · · · . This

is a partition of size n, which we denote by type(σ) and call the cycle type of σ. Conjugation

of permutations corresponds to relabeling of the vertices of the graph. This idea shows that the

map σ → type(σ) gives a bijection from Conj(Sn) to the set of partitions of size n.

Let Frob0 : Z(C[Sn])→ Symn be the map sending∑
g∈Sn

fgg →
∑
g∈Sn

fgptype g ∈ Symn,

where for any partition λ we denote pλ =
∏
i pλi .

Then we have for any V ∈ Irr(Sn)

Frob0 Φ−1δV =
1

n!

∑
σ∈Sn

Tr(σ−1|V )ptypeσ.

Note that for σ ∈ Sn we have typeσ = typeσ−1, so σ and σ−1 belong to the same conjugacy

class and have the same trace.

More generally, for any representation V of Sn we define the Frobenius character by

(11.1) FrobV =
1

n!

∑
σ∈Sn

Tr(σ|V )ptypeσ.

This is an important invariant of representations of Sn which we will study. In particular, we

will show that the irreducible representations go to the Schur functions.

We define the Hall scalar product on Symn by transporting the scalar product from Z(Z[Sn])

via Frob0. Let us compute the scalar product in the power sum basis.

Proposition 11.2. For any f, f ′ ∈ Symn let (f, f ′) = (Frob−10 f,Frob−10 f ′). Then for any

λ, µ ` n we have

(pλ, pµ) =

0 if λ 6= µ

zλ if λ = µ,

where

zλ =

l(λ)∏
i=1

λi
∏
m

#{j : λj = m}!,

zλ is the number of permutations σ′ that commute with σ where σ is any permutation of type λ.

Proof. Let cλ = {σ ∈ Sn : typeσ = λ}. We have

Frob−10 pλ =
1

|cλ|
∑
σ∈cλ

σ.
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Using Proposition 11.1 we obtain

(pλ, pµ) =
|G|

|cλ| · |cµ|
coeff1

∑
σ∈cλ

σ
∑
σ′∈cµ

σ′

 .

It is clear that for λ 6= µ we get 0. If λ = µ, we obtain that for each σ there is a unique σ′ = σ−1

that contributes to the coefficient of 1. Therefore,

(pλ, pµ) =
|G|
|cλ|

= zλ.

The last identity follows from the fact that G acts on cλ transitively by conjugation and the size

of the stabilizer of each element σ ∈ cλ is zλ.

The formula for zλ follows from the graphical representation of the permutation σ such that

typeσ = λ. Namely, zλ is the number of automorphisms of the oriented graph which consists of

oriented cycles of sizes λ1, λ2, . . .. The automorphisms can permute cycles of the same lengths,

and each cycle of length λi can be rotated in λi ways. �

12. Character tables of finite groups (Practice 7)

A finite group in SAGE is represented as a permutation group, which means a subgroup of the

symmetric group Sn for some n. A subgroup is given by a list of generators. Each generator is

a permutation, which is given in the so-called cycle notation, that is the list of cycles. Cycles of

length 1 are omitted. Thus (1, 2) is the permutation which permutes 1 and 2 and leaves the other

elements in place.

We start by implementing S3 by hand and computing its conjugacy classes and the character

table.

sage : G=PermutationGroup ( [ ( 0 , 1 ) , ( 1 , 2 ) ] )

sage : l i s t (G)

[ ( ) , ( 1 , 2 ) , ( 0 , 1 ) , ( 0 , 2 , 1 ) , ( 0 , 1 , 2 ) , ( 0 , 2 ) ]

sage : G. c o n j u g a c y c l a s s e s ( )

[ Conjugacy class o f ( ) in Permutation Group with gene ra to r s [ ( 1 , 2 ) ,

( 0 , 1 ) ] ,

Conjugacy class o f ( 1 , 2 ) in Permutation Group with gene ra to r s [ ( 1 , 2 ) ,

( 0 , 1 ) ] ,

Conjugacy class o f ( 0 , 1 , 2 ) in Permutation Group with gene ra to r s [ ( 1 , 2 )

, ( 0 , 1 ) ] ]

sage : G. c h a r a c t e r t a b l e ( )
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[ 1 −1 1 ]

[ 2 0 −1]

[ 1 1 1 ]

SAGE has many groups already built in. For instance, we have the symmetric groups:

sage : groups . permutation . Symmetric (3 )

Symmetric group o f order 3 ! as a permutation group

sage : groups . permutation . Symmetric (4 )

Symmetric group o f order 4 ! as a permutation group

sage : G=groups . permutation . Symmetric (4 )

sage : G. c h a r a c t e r t a b l e ( )

[ 1 −1 1 1 −1]

[ 3 −1 −1 0 1 ]

[ 2 0 2 −1 0 ]

[ 3 1 −1 0 −1]

[ 1 1 1 1 1 ]

sage : G. c o n j u g a c y c l a s s e s ( )

[ Conjugacy class o f c y c l e type [ 1 , 1 , 1 , 1 ] in Symmetric group o f

order 4 ! as a permutation group ,

Conjugacy class o f c y c l e type [ 2 , 1 , 1 ] in Symmetric group o f order 4 !

as a permutation group ,

Conjugacy class o f c y c l e type [ 2 , 2 ] in Symmetric group o f order 4 ! as

a permutation group ,

Conjugacy class o f c y c l e type [ 3 , 1 ] in Symmetric group o f order 4 ! as

a permutation group ,

Conjugacy class o f c y c l e type [ 4 ] in Symmetric group o f order 4 ! as a

permutation group ]

To answer a question from the student we calculate the number of conjugacy classes in Sn and

then look it up in OEIS.

sage : [ len ( l i s t ( groups . permutation . Symmetric (n) . c o n j u g a c y c l a s s e s ( ) ) )

for n in range (10) ]

[ 1 , 1 , 2 , 3 , 5 , 7 , 11 , 15 , 22 , 30 ]

There is the Rubik’s cube group, but it is too large:
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sage : G=groups . permutation . RubiksCube ( )

sage : G. order ( )

43252003274489856000

sage : G. order ( ) . f a c t o r ( )

2ˆ27 ∗ 3ˆ14 ∗ 5ˆ3 ∗ 7ˆ2 ∗ 11

As a next example we pick some interesting group, for instance PGL(2, 5), which is the group

of 2×2 matrices over F5, the field of residues modulo 5. Looking at the character table we notice

a similarity with S5. It turns out, the two groups are isomorphic!

sage : G=groups . permutation .PGL(2 , 5 )

sage : G

Permutation Group with gene ra to r s [ ( 3 , 6 , 5 , 4 ) , ( 1 , 2 , 5 ) ( 3 , 4 , 6 ) ]

sage : G. order ( )

120

sage : G. c h a r a c t e r t a b l e ( )

[ 1 1 1 1 1 1 1 ]

[ 1 −1 1 1 −1 1 −1]

[ 4 0 0 −1 −2 1 1 ]

[ 4 0 0 −1 2 1 −1]

[ 5 −1 1 0 1 −1 1 ]

[ 5 1 1 0 −1 −1 −1]

[ 6 0 −2 1 0 0 0 ]

sage : G. i s s i m p l e ( )

Fa l se

sage : G2=groups . permutation . Symmetric (5 )

sage : G2 . c h a r a c t e r t a b l e ( )

[ 1 −1 1 1 −1 −1 1 ]

[ 4 −2 0 1 1 0 −1]

[ 5 −1 1 −1 −1 1 0 ]

[ 6 0 −2 0 0 0 1 ]

[ 5 1 1 −1 1 −1 0 ]

[ 4 2 0 1 −1 0 −1]

[ 1 1 1 1 1 1 1 ]

sage : G2 . i s i s o m o r p h i c (G)

True
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As a next exercise we recall the character table for S3 and the row- and column-orthogonality.

We compute the Frobenius character and obtain the Schur polynomial:

sage : Sym=SymmetricFunctions (QQ)

sage : f =(Sym. power ( ) [1 ,1 ,1 ] −Sym. power ( ) [ 3 ] ) /3

sage : f

1/3∗p [ 1 , 1 , 1 ] − 1/3∗p [ 3 ]

sage : Sym. homogeneous ( ) ( f )

h [ 2 , 1 ] − h [ 3 ]

sage : Sym. schur ( ) ( f )

s [ 2 , 1 ]

13. Schur functions are Frobenius characters of irreducible representations of

symmetric groups (Lecture 6)

At this moment we have constructed the Frobenius character Frob, which associates to a rep-

resentation of Sn a symmetric function of degree n. We also have a scalar product on Symn,

explicitly defined in the power sum basis, and we know that Frobenius characters of irreducible

representations are orthonormal. The number of irreducible representations is equal to the num-

ber of conjugacy classes, which is the number of partitions of size n. Therefore, the characters of

irreducible representations must form an orthonormal basis.

First we have to construct at least some representations of Sn. For each λ ` n we will construct

two representations Ind+
λ and Ind−λ . First we define Ind+

λ by

Ind+
λ = C[Sn/Sλ],

where Sλ = Sλ1 × Sλ2 × · · · × Sλl(λ) ⊂ Sn is the subgroup which preserves the decomposition of

the sequence 1, 2, . . . , n into consecutive blocks of lengths λ1, λ2, . . ..

More explicitly, let aλ be the sequence of length n

aλ = (1, . . . , 1, 2, . . . , 2, . . .),

where each i appears λi times. The group Sn acts on sequences of length n by permuting the

entries, and the stabilizer of aλ is Sλ:

σ(aλ) = aλ ⇔ σ ∈ Sλ.

Thus Sn/Sλ can be identified with the set of all sequences that can obtained from aλ by permu-

tations.

The representation C[Sn/Sλ] is defined as the vector space with basis {ea|a ∈ Sn/Sλ}, and the

group Sn acts on Sn/Sλ and therefore on the basis elements:

σ(ea) = eσ(a) (a ∈ Sn).
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The representaton Ind−λ is defined by

Ind−λ = Ind+
λ′ ⊗ sign,

or more explicitly as a vector space with basis {ea|a ∈ Sn/Sλ′}, but the action is “twisted”:

σ(ea) = sign(σ)eσ(a) (a ∈ Sn/Sλ).

We will prove

Theorem 13.1. (i) For each λ ` n there exists a unique irreducible representation Vλ of

Sn which appears in both Ind+
λ and Ind−λ . Moreover, Vλ appears in both Ind+

λ and Ind−λ
with multiplicity 1.

(ii) If λ > µ in the lexicographic order, then the representations Ind+
λ and Ind−µ do not have

any irreducible sub-representations in common.

The proof occupies the rest of the section. Our strategy is to reduce the statements to state-

ments about scalar products. The first statement is equivalent to the following:

(13.1) (Frob(Ind+
λ ),Frob(Ind−λ )) = 1.

The second statement is equivalent to

(13.2) (Frob(Ind+
µ ),Frob(Ind−λ )) = 0 (µ > λ).

So we first compute Frob(Ind+
λ ),Frob(Ind−λ ) in terms of well-known symmetric functions. Note

that for λ = (n) the representation Ind+
(n) is the trivial representation.

Proposition 13.2. The Frobenius character of the trivial representation of Sn is hn. We have∑
λ`n

pλ
zλ

= hn.

Proof. From the definition (11.1), all the traces being 1 we obtain

Frob(Ind+
(n)) =

1

n!

∑
σ∈Sn

ptype(σ).

For each λ the number of permutations of type λ is given by |cλ| = n!
zλ

. So we have

Frob(Ind+
(n)) =

∑
λ`n

pλ
zλ
.

Consider the summand pλ
zλ

for a fixed λ. Let nm = #{j : λj = m}. Then we have

pλ
zλ

=
∏

m:nm 6=0

1

nm!

(pm
m

)nm
.
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Now for the generating function we can write

(13.3) 1 +

∞∑
n=1

tn Frob(Ind+
(n)) =

∑
~n

∏
m:nm 6=0

tmnm

nm!

(pm
m

)nm
,

where the summation goes over the set of infinite vectors ~n = (n1, n2, . . .) of non-negative integers

with only finitely positive entries. Indeed, each such vector corresponds to a unique partition λ

with nm = #{j : λj = m}.
Next we recognize that (13.3) is the expansion of the product

∞∏
m=1

∞∑
n=0

tmn

n!

(pm
m

)n
=
∞∏
m=1

exp(tmpm/m) = exp

( ∞∑
m=1

tmpm
m

)
,

which equals
∑∞

m=0 hmt
m by Proposition 5.1. �

The case of a general induced representation is not far:

Proposition 13.3. The Frobenius character of Ind+
λ is

Frob(Ind+
λ ) = hλ =

∏
i

hλi .

Proof. Since each σ ∈ Sn acting on Ind+
λ permutes the basis elements, its trace equals to the

number of basis elements that are fixed by σ. So we have

Frob(Ind+
λ ) =

1

n!

∑
σ∈Sn

ptype(σ) Tr(σ| Ind+
λ ) =

1

n!

∑
σ∈Sn, a∈Sn/Sλ, σa=a

ptype(σ).

The contribution of each a to the sum is the same, so we can replace all of them by the class of

the identity element. Then the condition σa = a translates to σ ∈ Sλ:

Frob(Ind+
λ ) =

|Sn/Sλ|
n!

∑
σ∈Sλ

ptypeσ.

We have |Sn/Sλ| = n!∏
i λi!

. Each σ ∈ Sλ corresponds to a sequence of permutations σi ∈ Sλi
(i = 1, . . . , l(λ)), and the cycle type of σ is obtained by putting together the cycle types of σi.

Thus the formula factors:

Frob(Ind+
λ ) =

1∏
i λi!

∑
σ1∈Sλ1 , σ2∈Sλ2 , ...

ptypeσ1ptypeσ2 . . . =

l(λ)∏
i=1

1

λi!

∑
σ∈Sλi

ptypeσ.

By Proposition 13.2, the value of the i-th factor equals hλi . �

Tensoring by sign has the effect of replacing each hi by ei:

Proposition 13.4. The Frobenius character of Ind−λ is

Frob(Ind−λ ) = eλ′ .
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Proof. More generally, suppose we know the Frobenius character of some Sn-representation V

and we want to compute the Frobenius character of V ⊗ sign. For each σ ∈ Sn the action of σ

on V ⊗ sign is the same as the action on V , but multiplied by the sign of σ. Therefore,

Tr(σ|V ⊗ sign) = Tr(σ|V ) sign(σ).

The sign of σ can be related to the type as follows. If type(σ) = λ, then

sign(σ) = (−1)
∑l(λ)
i=1 λi−1.

So let us define the operator ω : Sym→ Sym by sending any polynomial in p1, p2, . . . to the same

polynomial evaluated at {(−1)k−1pk}k>0. By the construction,

Frob(V ⊗ σ) = ω Frob(V ).

Applying Proposition 5.1, we obtain ωhk = ek and more generally ωhλ = eλ. Thus

Frob(Ind+
λ ⊗ sign) = eλ,

and the statement follows. �

To complete the proof of (13.1) and (13.2) we will need the following:

Proposition 13.5. For any partitions λ, µ of same size,

(hλ,mµ) =

1 if λ = µ,

0 otherwise.

We will postpone its proof until the next lecture. Assuming Proposition 13.5, the statements

(13.1) and (13.2) immediately follow from the expansion

Frob(Ind−λ ) = eλ′ = mλ + (terms mµ with µ < λ),

which is precisely what we have shown during the proof of Theorem 3.3.

Note that also we do not know the character of Vλ yet, we know that it satisfies the following

property:

(13.4) Frob(Vλ) = eλ′ = mλ + (terms mµ with µ < λ).

Proof. This holds because Vλ appears with multiplicity one in Ind+
λ , and it does not appear in

Ind+
µ for µ > λ. �

The property (13.4) and the orthogonality uniquely determine Frob(Vλ) by the Gram-Schmidt

orthogonalization argument. By Proposition 7.3, Schur polynomials satisfy (13.4). So, in order

to show that Frob(Vλ) = sλ, it is enough to verify that Schur polynomials are orthogonal. This,

together with Proposition 13.5 will be shown in the next lecture.



40 SYMMETRIC FUNCTIONS IN GEOMETRY

14. Examples for the induced representation (Practice 8)

We explicitly describe the induced representation Ind+
2,2. It is six-dimensional, we compute its

character and the Frobenius character, and check that it is h22. We have (by Pieri rules)

h22 = s2,2 + s3,1 + s4.

It is clear how to see the trivial representation as a sub-representation of Ind+
2,2. The remaining

5-dimensional piece should therefore split into two representations as 2 + 3 corresponding to s2,2

and s3,1.

15. Cauchy product formula (Lecture 7)

In order to prove Proposition 13.5 and orthogonality of Schur polynomials, we will use a general

technique of reproducing kernels.

Suppose X is a vector space of dimension m endowed with a symmetric bilinear form (·, ·).

Definition 15.1. Two bases a1, a2, . . . , am and b1, b2, . . . , bm are dual if

(ai, bj) =

1 if i = j,

0 if i 6= j.

The basic property is

Proposition 15.2. For each basis a1, . . . , am there is at most one dual basis b1, . . . , bm. The form

is non-degenerate if and only if there exists a pair of dual basis. If the form is non-degenerate,

than any basis has a unique dual.

Suppose the form is non-degenerate and choose any pair of dual bases a1, a2, . . . , am and

b1, b2, . . . , bm. Define the reproducing kernel by

(15.1) K =
m∑
i=1

ai ⊗ bi.

Lemma 15.3. The tensor K depends only on the bilinear form and does not depend on the choice

of dual bases. Conversely, if for two sequences of vectors a1, . . . , am, b1, . . . , bm we have (15.1),

then they are dual bases.

Proof. The main idea of the proof is to pick a third basis c1, . . . , cn and show that for arbitrary

dual pair a1, . . . , am, b1, . . . , bm, the matrix of K is the inverse of the matrix of the bilinear

form. �

We will use the following idea. Suppose X is a finite dimensional subspace of the space of

polynomials in variables x1, . . . , xn. Then X ⊗X can be identified with a subspace of the space

of polynomials in x1, . . . , xn, y1, . . . , yn by identifying

xq11 x
q2
2 . . . xqnn ⊗ x

r1
1 x

r2
2 . . . xrnn ∈ C[x1, . . . , xn]⊗ C[x1, . . . , xn]
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with

xq11 x
q2
2 . . . xqnn y

r1
1 y

r2
2 . . . yrnn ∈ C[x1, . . . , xn, y1, . . . , yn].

Now let us consider the case X = Symd with the Hall scalar product. Let n ≥ d. Then we

have Symd
n
∼= Symd and we can view the reproducing kernel of the Hall scalar product on Symd

as a function in variables x1, . . . , xn, y1, . . . , yn, which we denote by Kd. By Proposition 11.2 we

have

Kd(x1, . . . , xn, y1, . . . , yn) =
∑
λ`d

pλ(x1, . . . , xn)pλ(y1, . . . , yn)

zλ
.

This function makes sense also if n < d. Consider the generating function

K(x1, . . . , xn, y1, . . . , yn; t) = 1 +

∞∑
n=1

Kd(x1, . . . , xn, y1, . . . , yn)td.

Proposition 15.4 (Cauchy product formula). We have

K(x1, . . . , xn, y1, . . . , yn; t) =
n∏

i,j=1

1

1− xiyjt
.

Proof. Notice that

pλ(x1, . . . , xn)pλ(y1, . . . , yn) = pλ(x1y1, x1y2, . . . , xnyn),

where we have n2 arguments xiyj on the right hand side. Then we can use Proposition 13.2 to

see that

Kd(x1, . . . , xn, y1, . . . , yn) = hd(x1y1, x1y2, . . . , xnyn).

Finally, use (5.1) to write
∑

d t
dhd in the product form. �

Now we are ready to prove Proposition 13.5.

Proof of Proposition 13.5. Using Lemma 15.3, it is enough to show that

(15.2) K(x1, . . . , xn, y1, . . . , yn; t) = 1 +
∞∑
d=1

td
∑
λ`d

hλ(x1, . . . , xn)mλ(y1, . . . , yn).

By the product formula and (5.1), we have

K(x1, . . . , xn, y1, . . . , yn; t) =
n∏
j=1

(
1 +

∞∑
k=1

(yjt)
khk(x1, . . . , xn)

)
.

Opening the parenthesis we see that the coefficient of ya11 y
a2
2 · · · yann t

∑
i ai is precisely∏

i

hai(x1, . . . , xn) = hλ(x1, . . . , xn),

where λ is a partition obtained by sorting the sequence a1, . . . , an and removing zeros. So (15.2)

is true. �
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We prove orthogonality of Schur functions in a similar way

Proposition 15.5. For any two partitions λ, µ of same size, we have

(sλ, sµ) =

1 if λ = µ,

0 otherwise.

Proof. Similarly to the proof of Proposition 13.5, we need to show

(15.3) K(x1, . . . , xn, y1, . . . , yn; t) =
∞∑
d=0

td
∑
λ`d

sλ(x1, . . . , xn)sλ(y1, . . . , yn).

Denote the right hand side of (15.3) by RHS. Let M(x) be the infinite matrix of height n whose

i, j-entry is xj−1i :

M(x) =


1 x1 x21 x31 · · ·
1 x2 x22 x32 · · ·
...

...
... · · ·

1 xn x2n x3n · · ·


Similarly, let M(ty) be the infinite matrix whose i, j-entry is (tyi)

j−1. Then we have (see Section

7)

RHS ∆(x)∆(y)t(
n
2) =

∑
0<a1<a2<...<an

detMa(x) detMa(ty),

where Ma(x) is the sub-matrix of M(x) formed by columns a1, . . . , an, and similarly for Ma(ty).

By a linear algebra theorem, the right hand side can be written as the determinant of the product

matrix M(x)M(ty)tr. Although the product of infinite matrices is not well-defined, if we want

to compute the coefficient of td for some fixed value of d, we need to consider only finitely many

elements in these matrices. So we can replace the infinite matrices by the truncated n × N(d)

matrices where N(d) is big enough. The product matrix has entries 1
1−xiyjt . Hence

RHS ∆(x)∆(y)t(
n
2) = det

(
1

1− xiyjt

)n
i,j=1

.

Now we have an identity of rational functions that we need to prove. We can replace yi by yi/t

to get rid of y. So we are reduced to proving the following algebraic identity, which is left as an

exercise:

det

(
1

1− xiyj

)n
i,j=1

=
∆(x)∆(y)∏n
i,j=1(1− xiyj)

.

�

From the discussion in the end of Section 13, we conclude

Theorem 15.6. For any partition λ, the Frobenius character of the irreducible representation

Vλ is sλ.
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16. Schur-Weyl duality (Lectures 8-9)

17. Practice 9

Decompositions of E ⊗ E, E ⊗ E ⊗ E.

18. Practice 10

Some more discussion about the proof of Schur-Weyl duality and how to describe GLn repre-

sentations explicitly.

19. Bruhat decomposition of GLn(C) (Lecture 10)

We construct the Bruhat decomposition of GLn(C) and explain how it is related to under-

standing relative position of flags.

20. Algebraic manifold structure on the Grassmannian (Lecture 11)

We give a definition of an algebraic variety, similar to the definition of a smooth or complex

manifold. We cover Grassmannian by charts and show that it is an algebraic manifold of dimension

k(n− k). We define Zariski open, Zariski closed sets and algebraic dimension.

21. Schubert cells (Lecture 12)

We construct Schubert cell decomposition and show that cells are Zariski locally closed. We

also compute dimensions of cells.

22. Practice 11

We compute Schubert cells of Gr2(C4). We show that some intersections of cells of dimension

2 are zero.

23. Poincaré duality and basic properties of intersections (Lecture 13)

Half of the lecture is used to explain the basic ideas behind homology, cohomology and Poincaré

duality. Then we prove that for |λ|+ |µ| = k(n−k) we have (cλ, cµ) is 1 if µ is the complementary

partition to λ (µ = λ̄) and 0 otherwise. We also prove that the cells can intersect only if µ ⊂ λ̄.

24. Intersecting Schubert cells in SAGE (Practice 12)

sage : FF=QQ

sage : K=3

sage : N=6

sage : def jumps ( lam ) :

. . . . : lam = l i s t ( lam )
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. . . . : while len ( lam )<K:

. . . . : lam . append (0 )

. . . . : r e s = [N−1−(lam [ i ]+K−i −1) for i in range (K) ]

. . . . : return r e s

. . . . :

sage : jumps ( [ ] )

[ 3 , 4 , 5 ]

sage : jumps ( [ 1 ] )

[ 2 , 4 , 5 ]

sage : jumps ( [ 2 ] )

[ 1 , 4 , 5 ]

sage : jumps ( [ 1 , 1 ] )

[ 2 , 3 , 5 ]

sage : def gene r i c mat r i x ( lam ) :

. . . . : a = jumps ( lam )

. . . . : s t a r s = [ ]

. . . . : for i in range (K) :

. . . . : for j in range (N) :

. . . . : i f j<a [ i ] and j not in a :

. . . . : s t a r s . append ( ( i , j ) )

. . . . : return s t a r s

. . . . :

sage : g ene r i c mat r i x ( [ ] )

[ ( 0 , 0) , (0 , 1) , (0 , 2) , (1 , 0) , (1 , 1) , (1 , 2) , (2 , 0) , (2 , 1) , (2 ,

2) ]

sage : g ene r i c mat r i x ( [ 1 ] )

[ ( 0 , 0) , (0 , 1) , (1 , 0) , (1 , 1) , (1 , 3) , (2 , 0) , (2 , 1) , (2 , 3) ]

sage : g ene r i c mat r i x ( [ 2 ] )

[ ( 0 , 0) , (1 , 0) , (1 , 2) , (1 , 3) , (2 , 0) , (2 , 2) , (2 , 3) ]

sage : g ene r i c mat r i x ( [ 1 , 1 ] )

[ ( 0 , 0) , (0 , 1) , (1 , 0) , (1 , 1) , (2 , 0) , (2 , 1) , (2 , 4) ]

sage : g ene r i c mat r i x ( [ 2 , 1 ] )

[ ( 0 , 0) , (1 , 0) , (1 , 2) , (2 , 0) , (2 , 2) , (2 , 4) ]

sage : jumps ( [ 2 , 1 ] )

[ 1 , 3 , 5 ]
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sage : def gene r i c mat r i x ( lam ) :

. . . . : a = jumps ( lam )

. . . . : s t a r s = [ ]

. . . . : for i in range (K) :

. . . . : for j in range (N) :

. . . . : i f j<a [ i ] and j not in a :

. . . . : s t a r s . append ( ( i , j ) )

. . . . : names = [ ’m%d%d ’%( s t a r s [ i ] [ 0 ] , s t a r s [ i ] [ 1 ] ) for i in range (

len ( s t a r s ) ) ]

. . . . : return names

. . . . :

sage : g ene r i c mat r i x ( [ 2 , 1 ] )

[ ’m00 ’ , ’m10 ’ , ’m12 ’ , ’m20 ’ , ’m22 ’ , ’m24 ’ ]

sage : def gene r i c mat r i x ( lam ) :

. . . . : a = jumps ( lam )

. . . . : s t a r s = [ ]

. . . . : for i in range (K) :

. . . . : for j in range (N) :

. . . . : i f j<a [ i ] and j not in a :

. . . . : s t a r s . append ( ( i , j ) )

. . . . : names = [ ’m%d%d ’%( s t a r s [ i ] [ 0 ] , s t a r s [ i ] [ 1 ] ) for i in range (

len ( s t a r s ) ) ]

. . . . : R = PolynomialRing (FF, names=names )

. . . . : M = matrix (R, K, N)

. . . . : for i in range (K) :

. . . . : M[ i , a [ i ] ]=1

. . . . : for i in range ( len ( s t a r s ) ) :

. . . . : M[ s t a r s [ i ] [ 0 ] , s t a r s [ i ] [ 1 ] ] = R. gen ( i )

. . . . : return M, R

. . . . :

sage : g ene r i c mat r i x ( [ 2 , 1 ] )

(

[ m00 1 0 0 0 0 ]

[ m10 0 m12 1 0 0 ]
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[ m20 0 m22 0 m24 1 ] , Mu l t i va r i a t e Polynomial Ring in m00 , m10 ,

m12 , m20 , m22 , m24 over Rat iona l F i e ld

)

sage : def mat to equat ions (M, mu) :

. . . . : r e s = [ ]

. . . . : mu=l i s t (mu)

. . . . : while len (mu)<K:

. . . . : mu. append (0 )

. . . . : for i in range (K) :

. . . . : s i z e = K−i

. . . . : numcols = mu[ i ]+K−i−1

. . . . : for s s1 in Subsets ( range (K) , s i z e ) :

. . . . : for s s2 in Subsets ( range ( numcols ) , s i z e ) :

. . . . : det=M. matr ix from rows and columns ( l i s t ( s s1 ) ,

l i s t ( s s2 ) ) . det ( )

. . . . : r e s . append ( det )

. . . . : return r e s

. . . . :

sage : mat to equat ions (M, [ 1 ] )

[−m02∗m11∗m20 + m01∗m12∗m20 + m02∗m10∗m21 − m00∗m12∗m21 − m01∗m10∗m22

+ m00∗m11∗m22 ]

sage : mat to equat ions (M, [ 1 , 1 ] )

[−m02∗m11∗m20 + m01∗m12∗m20 + m02∗m10∗m21 − m00∗m12∗m21 − m01∗m10∗m22

+ m00∗m11∗m22 ,

−m01∗m10 + m00∗m11 ,

−m01∗m20 + m00∗m21 ,

−m11∗m20 + m10∗m21 ]

sage : mat to equat ions (M, [ 3 ] )

[−m02∗m11∗m20 + m01∗m12∗m20 + m02∗m10∗m21 − m00∗m12∗m21 − m01∗m10∗m22

+ m00∗m11∗m22 ,

−m11∗m20 + m10∗m21 ,

m01∗m20 − m00∗m21 ,

−m12∗m20 + m10∗m22 ,

m02∗m20 − m00∗m22 ,

m20 ,
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−m12∗m21 + m11∗m22 ,

m02∗m21 − m01∗m22 ,

m21 ,

m22 ]

sage : mat to equat ions (M, [ 1 , 1 , 1 ] )

[−m02∗m11∗m20 + m01∗m12∗m20 + m02∗m10∗m21 − m00∗m12∗m21 − m01∗m10∗m22

+ m00∗m11∗m22 ,

−m01∗m10 + m00∗m11 ,

−m01∗m20 + m00∗m21 ,

−m11∗m20 + m10∗m21 ,

m00 ,

m10 ,

m20 ]

sage : mat to equat ions (M, [ 1 ] )

[−m02∗m11∗m20 + m01∗m12∗m20 + m02∗m10∗m21 − m00∗m12∗m21 − m01∗m10∗m22

+ m00∗m11∗m22 ]

sage : M,R=gene r i c mat r i x ( [ 2 , 1 ] )

sage : M

[ m00 1 0 0 0 0 ]

[ m10 0 m12 1 0 0 ]

[ m20 0 m22 0 m24 1 ]

sage : mat to equat ions (M, [ 1 ] )

[ m12∗m20 − m10∗m22 ]

sage : J=R. i d e a l ( mat to equat ions (M, [ 1 ] ) )

sage : J . dimension ( )

5

sage : R

Mul t i va r i a t e Polynomial Ring in m00 , m10 , m12 , m20 , m22 , m24 over

Rat iona l F i e ld

sage : M,R=gene r i c mat r i x ( [ 2 , 2 ] )

sage : J=R. i d e a l ( mat to equat ions (M, [ 2 , 2 ] ) )

sage : J . dimension ( )

−1

sage : M,R=gene r i c mat r i x ( [ 2 , 1 ] )

sage : J=R. i d e a l ( mat to equat ions (M, [ 3 , 2 , 1 ] ) )
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sage : J . dimension ( )

0

sage : J . g r o e b n e r b a s i s ( )

[ m00 , m10 , m12 , m20 , m22 , m24 ]

sage : J . v a r i e t y (QQ)

[{m24 : 0 , m22 : 0 , m20 : 0 , m12 : 0 , m10 : 0 , m00 : 0} ]

sage : J . v a r i e t y (QQbar)

[{m00 : 0 , m20 : 0 , m10 : 0 , m22 : 0 , m12 : 0 , m24 : 0} ]

sage : J . v a r i e t y (CC)

[{m24 : 0 .000000000000000 , m22 : 0 .000000000000000 , m20 :

0 .000000000000000 , m12 : 0 .000000000000000 , m10 : 0 .000000000000000 ,

m00 : 0 .000000000000000} ]

sage : M,R=gene r i c mat r i x ( [ 1 ] )

sage : J=R. i d e a l ( mat to equat ions (M, [ 1 ] ) )

sage : J . g r o e b n e r b a s i s ( )

[ m11∗m20 − m10∗m21 ]

sage : R

Mul t i va r i a t e Polynomial Ring in m00 , m01 , m10 , m11 , m13 , m20 , m21 , m23

over Rat iona l F i e ld

sage : M,R=gene r i c mat r i x ( [ 2 ] )

sage : J=R. i d e a l ( mat to equat ions (M, [ 3 , 1 , 1 ] ) )

sage : J . g r o e b n e r b a s i s ( )

[ m00 , m10 , m20 , m22 , m23 ]

sage : R

Mul t i va r i a t e Polynomial Ring in m00 , m10 , m12 , m13 , m20 , m22 , m23 over

Rat iona l F i e ld

25. Pieri rules and the cohomology ring of the Grassmannian (Lecture 14)

We compute triple intersections cλ · cµ · c(r) and match it with Pieri rules, thus proving that

the map sending sλ to cλ is a ring homomorphism.

26. Geometric interpret (Lecture 15)
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